20 Urinary tract infections
Acquisition and etiology
The Gram-negative rod Escherichia coli is the commonest cause of ascending UTI
Other members of the Enterobacteriaceae are also implicated (Fig. 20.1). Proteus mirabilis is often associated with urinary stones (calculi), probably because this organism produces a potent urease, which acts on urea to produce ammonia, rendering the urine alkaline. Citrobacter, Klebsiella, Enterobacter, Proteus, and Pseudomonas aeruginosa are more frequently found in hospital-acquired UTI because their resistance to antibiotics favours their selection in hospital patients (see Ch. 36).
Viral causes of UTI appear to be rare, although there are associations with haemorrhagic cystitis and other renal syndromes
Certain viruses may be recovered from the urine in the absence of urinary tract disease and include:
• The human polyomaviruses, JC and BK, enter the body via the respiratory tract, spread through the body and infect epithelial cells in the kidney tubules and ureter, where they establish latency with persistence of the viral genome. About 35% of kidneys from healthy individuals contain polyomavirus DNA sequences. However, during normal pregnancy, the viruses may reactivate asymptomatically, with the appearance of large amounts of virus in the urine. Reactivation also occurs in immunocompromised patients (see Ch. 30) and may lead to haemorrhagic cystitis.
• High titres of cytomegalovirus (CMV) and rubella may be shed asymptomatically in the urine of congenitally infected infants (see Ch. 23).
• In contrast to asymptomatic shedding, some serotypes of adenovirus have been implicated as a cause of haemorrhagic cystitis.
• The rodent-borne hantavirus responsible for Korean haemorrhagic fever infects capillary blood vessels in the kidney and can cause a renal syndrome with proteinuria.
• Finally, a number of other viruses can infect the kidneys, including mumps and HIV.
Very few parasites cause UTIs
• The fungi Candida spp. and Histoplasma capsulatum.
• The protozoan Trichomonas vaginalis (see Ch. 21), which can cause urethritis in both males and females, but is most often considered as a cause of vaginitis.
• Infections with Schistosoma haematobium (see Ch. 27), which result in inflammation of the bladder and commonly haematuria. The eggs penetrate the bladder wall, and in severe infections large granulomatous reactions can occur and the eggs may become calcified. Bladder cancer is associated with chronic infections, although the mechanism is uncertain. Obstruction of the ureter as a result of egg-induced inflammatory changes can also lead to hydronephrosis.
Pathogenesis
A variety of mechanical factors predispose to UTI
Anything that disrupts normal urine flow or complete emptying of the bladder or facilitates access of organisms to the bladder will predispose an individual to infection (Fig. 20.2). The shorter female urethra is a less effective deterrent to infection than the male urethra (see Ch. 13). Sexual intercourse facilitates the movement of organisms up the urethra, particularly in females, so the incidence of UTI is higher among sexually active women than among celibate women. Preceding bacterial colonization of the periurethral area of the vagina is perhaps important (see below).
Pregnancy, prostatic hypertrophy, renal calculi, tumours and strictures are the main causes of obstruction to complete bladder emptying
Catheterization is a major predisposing factor for UTI
During insertion of the catheter, bacteria may be carried directly into the bladder and, while in situ, the catheter facilitates bacterial access to the bladder either via the lumen of the catheter or by tracking up between the outside of the catheter and the urethral wall (Fig. 20.3). The catheter disrupts the normal bladder’s protective function action and allows bacteria to get a foothold. Thus, duration of catheterization is directly associated with increased probability of infection (i.e. risk of UTI increases by about 3–10% each day of catheterization).
A variety of virulence factors are present in the causative organisms
The conflict between host and parasite in the urinary tract has been discussed in Chapter 13. Most urinary tract pathogens originate in the faecal flora, but only the aerobic and facultative species such as E. coli possess the attributes required to colonize and infect the urinary tract. The ability to cause infection of the urinary tract is limited to certain serogroups of E. coli such as O (semantic) serotypes (e.g. O1, O2, O4, O6, O7 and O75) and K (capsular) serotypes (e.g. K1, K2, K3, K5, K12 and K13). These serotypes differ from those associated with gastrointestinal tract infection (see Ch. 22), which has led to use of the term ‘uropathogenic E. coli’ (UPEC). The success of these strains is attributable to a variety of genes in chromosomal pathogenicity islands (see Ch. 2) which are not found in faecal E. coli. For example, UPEC typically contains genes associated with colonization of the periurethral areas. A prime example is the adhesion known as P. fimbriae (pyelonephritis-associated pili (PAP)), which allows UPEC to specifically adhere to urethral and bladder epithelium. Studies with other species of urinary tract pathogens have confirmed the presence of similar adhesins for uroepithelial cells (Fig. 20.4).