Urinary tract infections

20 Urinary tract infections




Acquisition and etiology





The Gram-negative rod Escherichia coli is the commonest cause of ascending UTI


Other members of the Enterobacteriaceae are also implicated (Fig. 20.1). Proteus mirabilis is often associated with urinary stones (calculi), probably because this organism produces a potent urease, which acts on urea to produce ammonia, rendering the urine alkaline. Citrobacter, Klebsiella, Enterobacter, Proteus, and Pseudomonas aeruginosa are more frequently found in hospital-acquired UTI because their resistance to antibiotics favours their selection in hospital patients (see Ch. 36).



Among the Gram-positive species, Staphylococcus saprophyticus has a particular propensity for causing infections, especially in young sexually active women. Staphylococcus epidermidis and Enterococcus species are more often associated with UTI in hospitalized patients (especially those with AIDS), where multiple antibiotic resistance can cause treatment difficulties. In some instances, capnophilic species (organisms that grow better in air enriched with carbon dioxide), including corynebacteria and lactobacilli, have been implicated as possible causes of UTI. Obligate anaerobes are very rarely involved.


When there has been haematogenous spread to the urinary tract, other species may be found, e.g. Salmonella typhi, Staphylococcus aureus and Mycobacterium tuberculosis (renal tuberculosis).




Very few parasites cause UTIs


Other causes of UTI include:



The fungi Candida spp. and Histoplasma capsulatum.


The protozoan Trichomonas vaginalis (see Ch. 21), which can cause urethritis in both males and females, but is most often considered as a cause of vaginitis.


Infections with Schistosoma haematobium (see Ch. 27), which result in inflammation of the bladder and commonly haematuria. The eggs penetrate the bladder wall, and in severe infections large granulomatous reactions can occur and the eggs may become calcified. Bladder cancer is associated with chronic infections, although the mechanism is uncertain. Obstruction of the ureter as a result of egg-induced inflammatory changes can also lead to hydronephrosis.



Pathogenesis







A variety of virulence factors are present in the causative organisms


The conflict between host and parasite in the urinary tract has been discussed in Chapter 13. Most urinary tract pathogens originate in the faecal flora, but only the aerobic and facultative species such as E. coli possess the attributes required to colonize and infect the urinary tract. The ability to cause infection of the urinary tract is limited to certain serogroups of E. coli such as O (semantic) serotypes (e.g. O1, O2, O4, O6, O7 and O75) and K (capsular) serotypes (e.g. K1, K2, K3, K5, K12 and K13). These serotypes differ from those associated with gastrointestinal tract infection (see Ch. 22), which has led to use of the term ‘uropathogenic E. coli’ (UPEC). The success of these strains is attributable to a variety of genes in chromosomal pathogenicity islands (see Ch. 2) which are not found in faecal E. coli. For example, UPEC typically contains genes associated with colonization of the periurethral areas. A prime example is the adhesion known as P. fimbriae (pyelonephritis-associated pili (PAP)), which allows UPEC to specifically adhere to urethral and bladder epithelium. Studies with other species of urinary tract pathogens have confirmed the presence of similar adhesins for uroepithelial cells (Fig. 20.4).


Stay updated, free articles. Join our Telegram channel

Jul 9, 2017 | Posted by in MICROBIOLOGY | Comments Off on Urinary tract infections

Full access? Get Clinical Tree

Get Clinical Tree app for offline access