Sarcomas and Related Mesenchymal Tumors



Figure 37.1
Mechanisms of chromosomal DNA rearrangement leading to altered gene expression by either gene fusion (top pathway) or promoter exchange (bottom pathway)



The first mechanism by which chromosomal translocations result in altered gene function is by gene fusion (Fig. 37.1), in which chimeric or fusion genes are the result of joining of two parent genes (one upstream, or 5′, and the other downstream, or 3′, to the breakpoint). Both genes are truncated by the translocation involving the coding portions of the parent genes. In general, translocation breakpoints are located in noncoding introns, and the normal splicing mechanism removes the chimeric intron sequence. The exons are spliced “in frame” for the translational reading frame and can be translated into a novel fusion protein. In rare instances, the breakpoints are located in the exons of the parent genes. This may result in a novel chimeric product if the translational reading frame is maintained, or it may produce a truncated protein (encoded by the 5′ gene sequence) if the reading frame is lost. Transcription of chimeric genes is usually under the control of the upstream parent gene promoter but may be influenced by DNA sequences in or close to the downstream gene.

The second mechanism through which chromosomal translocations result in altered gene function is promoter exchange, in which the breakpoint occurs at the 5′ end of the coding region of the involved gene (Fig. 37.1). This results in the replacement of the gene’s promoter region with enhancer elements or with the promoter from the translocation partner. Promoter exchange leads to transcriptional activation with abnormal gene expression, but the protein is wild-type.

Numerous fusion genes have been identified in malignant tumors of the soft tissues and in mesenchymal tumors in general (Table 37.1). The majority of sarcoma translocations result in in-frame fusion genes, resulting in abnormal chimeric transcription factors [4]. In a few cases, the gene fusion results in an aberrant tyrosine kinase or an autocrine growth factor [810]. The der(17) associated with the nonreciprocal t(X;17)(p11.2;q25) of human alveolar soft part sarcoma produces a chimeric transcript between the transcription factor gene TFE3 and ASPL, a novel gene at 17q25 [11]. ASPL encodes a UBX-like domain at the C-terminus of the encoded protein. In alveolar soft part sarcoma, the 5′ end of ASPL is fused to exon 3 or 4 of TFE3, resulting in a fusion protein retaining the C-terminal TFE3 DNA-binding domain, a possible aberrant transcriptional regulator.


Table 37.1
Chromosomal alterations and aberrant gene products in sarcomas and related tumors



































































































































































































































































































































































































































































































































































































Tumor type

Chromosomal change

Fusion gene

Prevalence (%)

Number of fusion transcript variants

Function

Reference

Round cell tumors

Desmoplastic small round cell tumor (DSRCT)

t(11;22)(p13;q12)

EWSR1–WT1

100

Small (3)

Transcription

Ladanyi. Cancer Res 1994;54:2837

Ewing’s sarcoma (ES)/Peripheral

t(11;22)(q24;q12)

EWSR1–FLI1

>90

Large (18)

Transcription

Delattre. Nature 1992;359:162

Neuroectodermal tumor (PNET)

t(21;22)(q22;q12)

EWSR1–ERG

5

Large (4)

Transcription

Sorensen. Nat Genet 1994;6:146

Zucman. EMBO J 1993;12:4481

t(7;22)(p22;q12)

EWSR1–ETV1

<5

Uncertain

Transcription

Jeon. Oncogene 1995;10:1229

t(17;22)(q12;q12)

EWSR1–E1AF

<5

Uncertain

Transcription

Urano. Biochem Biophys Res Commun 1996;219:608

t(2;22)(q33;q12)

EWSR1–FEV

<5

Uncertain

Transcription

Peter. Oncogene 1997; 14:1159

t(16;21)(p11;q22)

FUS–ERG

<5

Small (2)

Transcription

Shing. Cancer Res 2003;63:4568

Rhabdomyosarcoma, alveolar type (ARMS)

t(2;13)(q35;q14)

PAX3–FOXO1

60

None (1)

Transcription

Galili. Nat Genet 1993;5:230

Shapiro. Cancer Res 1993;53:5108

t(1;13)(p36;q14)

PAX7–FOXO1

20

None (1)

Transcription

Davis. Cancer Res 1994;54:2869

t(2;2)(p23;q35)

PAX3–NCOA1

<5

Small (2)

Transcription

Sumegi. Genes Chromosomes Cancer 2010;49:224

t(2;8)(q35;q13)

PAX3–NCOA2

<5

None (1)

Transcription

Sumegi. Genes Chromosomes Cancer 2010;49:224

t(X;2)(q13;q35)

PAX3–FOXO4

<5

None (1)

Transcription

Barr. Cancer Res 2002;62:4704

Spindle cell tumors

Dermatofibrosarcoma protuberans/giant cell fibroblastoma

t(17;22)(q22;q13)

COL1A1–PDGFB

100

Large (>8)

Dysregulated cell growth (autocrine)

Simon. Nat Genet 1997;15:95

Fibrosarcoma, congenital type

t(12;15)(p13;q25)

ETV6–NTRK3

100

None (1)

Signaling (tyrosine kinase receptor)

Knezevich. Nat Genet 1998;18:184

Inflammatory myofibroblastic tumora

t(1;2)(q25;p23)

TPM3–ALK

20

None (1)

Signaling (TKR)

Griffin. Cancer Res 1999;59:2776

Inv(2)(p21;p23.2)

EML4–ALK

10

Large (>10)

Signaling (TKR)

Antonescu. Am J Surg Pathol. 2015

t(2;19)(p23;p13)

TPM4–ALK

10

None (1)

Signaling (TKR)

Lawrence. Am J Pathol 2000;157:377

6q22 alterations

ROS1 rearrangements (TFG and other genes)

10

Uncertain

Signaling (TKR)

Antonescu. Am J Surg Pathol. 2015

t(2;17)(p23;q23)

CLTC–ALK

Uncertain

None (1)

Signaling (TKR)

Bridge. Am J Pathol 2001;159:41

t(2;11)(p23;p15)

CARS–ALK

Uncertain

None (1)

Signaling (TKR)

Cools. Genes Chromosomes Cancer 2002;34:354

t(2;2)(p23;q13)

RANBP2–ALK

Uncertain

None (1)

Signaling (TKR)

Ma. Genes Chromosomes

Various loci

Other TK (PDGFRB, RET)

<5

Uncertain

Signaling (TKR)

Antonescu. Am J Surg Pathol 2015 Cancer 2003;37:98

Low-grade fibromyxoid

t(7;16)(q33;p11)

FUS–CREB3L2

>75

Large (>4)

Transcription

Mertens. Lab Invest 2005;85:408

Sarcoma/hyalinizing spindle cell tumor with giant rosettes
         
Reid. Am J Surg Pathol 2003;27:1229

Guillou. Am J Surg Pathol 2007;31:1387

t(11;16)(p11;p11)

FUS–CREB3L1

<10

Small (2)

Transcription

Mertens. Lab Invest 2005;85,408

Nodular fasciitis

t(17;22)(p13;q13)

MYH9–USP6

75

Uncertain

Signaling

Erickson-Johnson. Lab Invest 2011;91:1427

Spindle cell tumors with pericytic differentiation (pericytoma)

t(7;12)(p21-22;q13–15)

ACTB–GLI

Uncertain

Large (6)

Transcription

Dahlén. Am J Pathol 2004;164:1645

Synovial sarcoma

t(X;18)(p11;q11)

SS18–SSX1

65

None (1)

Transcription

Clark. Nat Genet 1994;7:502

t(X;18)(p11;q11)

SS18–SSX2

30

None (1)

Transcription

Crew. EMBO J 1995;14:2333

De Leeuw. Hum Mol Genet 1995;4:1097

t(X;18)(p11;q11)

SS18–SSX4

<5

None (1)

Transcription

Skytting. J Natl Cancer Inst 1999;91:974

Marker chromosome with 20q13.3/Xp11 rearrangement

SS18L1–SSX1

<5

None (1)

Transcription

Skytting. J Natl Cancer Inst 1999;91:974

Lipomatous tumors

Lipoblastoma

8q11–13

HAS2–PLAG1

>90

None (1)

Transcription

Hibbard. Cancer Res 2000;60:4869

t(7;8)(q22;q12)

COL1A2–PLAG1

Uncertain

None (1)

Transcription

Hibbard. Cancer Res 2000;60:4869

Lipoma

t(3;12)(q27–28;q14–15)

HMGA2–LPP

50b

None (1)

Transcription

Ashar. Cell 1995;82:57

Other t(12q15)

Other HMGA2 rearrangements
     
Schoenmakers. Nat Genet 1995;10:436

Petit, Genomics 1996;36:118

t(6p21)

HMGA1 rearrangement

10b
 
Transcription

Tkachenko. Cancer Res 1997;57:2276

Liposarcoma, myxoid/round cell type

t(12;16)(q13;p11)

FUS–DDIT3

>90

Small (3)

Transcription

Crozat. Nature 1993;363:640

Rabbitts. Nat Genet 1993;4:175

t(12;22)(q13;q12)

EWSR1–DDIT3

2–5

Uncertain

Transcription

Panagopoulos. Oncogene 1996;12:489

Liposarcoma, well-differentiated/atypical lipomatous tumor

12q13–15 amplification

MDM2, CDK4, other genes (HMGA2, GLI, SAS)

>70
 
Dysregulated cell growth

Pedeutour. Genes Chromosomes Cancer 1994;10:85

Fletcher. Am J Pathol 1996;148:623

Meza-Zepeda. Cancer 2001;31:264

Other soft tissue tumors

Aggressive angiomyxoma

12q13–15

HMGA2 rearrangement

Uncertain
 
Transcription

Nucci. Genes Chromosomes Cancer 2001;32:172

Alveolar soft part sarcoma

der(17)t(X;17)(p11;q25)

ASPL–TFE3

100

Small (2)

Transcription

Ladanyi. Oncogene 2001;20:48

Angiomatoid fibrous histiocytoma

t(2;22)(q33;q12)

EWSR1–CREB1

>50

None (1)

Transcription

Antonescu. Genes Chromosomes Cancer 2007;46:1051
 
t(12;22)(q13;q12)

EWSR1–ATF1

30

None (1)

Transcription

Hallor. Genes Chromosomes Cancer 2005;44:97

t(12;16)(q13;p11)

FUS–ATF1

10

Uncertain

Transcription

Waters. Cancer Genet Cytogenet 2000;121:109

Clear cell sarcoma (malignant melanoma of soft parts)

t(12;22)(q13;q12)

EWSR1–ATF1

>80

Large (4)

Transcription

Zucman. Nat Genet 1993;4:341

Wang. Mod Pathol 2009; 22:1201

t(2;22)(q33;q12)

EWSR1–CREB1

<10

None (1)

Transcription

Antonescu. Clin Cancer Res 2006;12:5356

Endometrial stromal tumors

t(7;17)(p15;q21)

JAZF1–JJAZ1

40–100

None (1)

Transcription

Koontz. Proc Natl Acad Sci USA 2001;98:6348

t(6;7)(p21;p15)

JAZF1–PHF1

<10

Small (2)

Transcription

Micci. Cancer Res 2006;66:107

t(6;10;10)(p21;q22;p11)

PHF1–EPC1

<10

None (1)

Transcription

Micci. Cancer Res 2006;66:107

Epithelioid sarcoma

del(22q11.2) or 22q11.2 rearrangement

INI1 inactivationc

<10–50c
 
Loss of tumor suppressor

Kohashi. Hum Pathol 2009;40:349

Modena. Cancer Res 2005;65:4012

Extraskeletal myxoid chondrosarcoma

t(9;22)(q22;q12)

EWSR1–NR4A3

70

Large (>4)

Transcription

Labelle. Hum Mol Genet 1995;4:2219

Clark. Oncogene 1996;12:229

t(9;17)(q22;q11)

TAF15–NR4A3

25

None (1)

Transcription

Sjogren. Cancer Res 1999;59:5064

Panagopoulos. Oncogene 1999;18:7594

Attwooll. Oncogene 1999;18:7599

t(9;15)(q22;q21)

TCF12–NR4A3

<5

None (1)

Transcription

Sjogren. Cancer Res 2000;60:6832

t(3;9)(q11;q22)

TGF–NR4A3

<5

None (1)

Transcription

Hisaoka. Genes Chromosomes Cancer 2004;40:325

Fibrosarcoma, sclerosing epithelioid type

t(7;16)(q33;p11)

FUS–CREB3L2

10

Large (>4)

Signaling

Wang. Mod Pathol 2012;25:846

Hemangioendothelioma, epithelioid type

t(1;3)(p36;q25)

WWTR1–CAMTA1

>90

Small (2)

Transcription

Errani. Genes Chromosomes Cancer 2011;50:644

Hemangioendothelioma, pseudomyogenic

t(7;19)(q22;q13)

SERPINE–FOSB

15

Uncertain

Transcription

Walther. J Pathol 2014;232:534

Hemangioma, epithelioid with atypia

t(3;19)(q25.1;q13.32)

WWTR1–FOSB

<5

None (1)

Transcription

Antonescu. Genes Chromosomes Cancer 2014;53:951

Hemangioma, epithelioid with atypia

del19(q13.2–q13.32) or t(19;19)(q13.2;q13.32)

ZFP36–FOSB

15

Small (2)

Transcription

Antonescu. Genes Chromosomes Cancer 2014;53:951

Malignant rhabdoid tumor

del(22q11.2) or 22q11.2 rearrangement

INI1 inactivationc

>90
 
Loss of tumor suppressor

Jackson. Clin Cancer Res 2009;15:1923

Myoepithelial tumors of soft tissue and boned

t(6;22)(p21;q12)

EWSR1–POU5F1

10

Uncertain

Transcription

Antonescu. Genes Chromosomes Cancer 2010;49:1114

t(1;22)(q23;q12)

EWSR1–PBX1

10

Uncertain

Transcription

Brandal. Genes Chromosomes Cancer 2008;47:558

t(9;22)(q33;q12)

EWSR1–PBX3

10

None (1)

Transcription

Agaram. Genes Chromosomes Cancer 2015;54:63

t(19;22)(q13;q12)

EWSR1–ZNF444

<5

Uncertain

Transcription

Brandal. Genes Chromosomes Cancer 2009;48:1051

Myxoinflammatory fibroblastic sarcoma/hemosiderotic fibrolipomatous tumor

t(1;10)(p22;q24)

TGFBR3–MGEA5

80

Uncertain

Transcription

Antonescu. Genes Chromosomes Cancer 2011;50:757

3p11–12 amplification

VGLL3, CHMP2B

80
 
Transcription

Hallor. J Pathol 2009;217:716

Tenosynovial giant cell tumor

t(1;2)(p13;q37)

CSF1–COL6A3

Uncertain

Large (4)

Transcription

Möller. Genes Chromosomes Cancer 2008;47:21

Bone tumors

Aneurysmal bone cyst

t(16;17)(q22;p13)

USP6–CDH11

20

None (1)

Signaling

Oliveira. Am J Pathol 2004;5:1773

Other t(17p13)

Other USP6 rearrangements (TRAP150, ZNF9, OMD, COL1A1, others)

40
   
Oliveira. Am J Pathol 2004;5:1773

Chondrosarcoma, mesenchymal type

t(8;8)(q13;q21)

HEY1–NCOA2

>90

Small (2)

Transcription

Wang. Genes Chromosomes Cancer 2012;51:127

Chondrosarcoma, secondary peripheral type (sporadic)

del(8q24)

EXT1 (homozygous inactivation)

10e
 
Biosynthesis of heparan sulfate

de Andrea. Oncogene 2012; 31:1095

Osteochondroma (sporadic)

del(8q24)

EXT1 (homozygous inactivation)

80e
 
Biosynthesis of heparan sulfate

Hameetman. J Natl Cancer Inst 2007;99:396

Osteosarcoma, low-grade (central and parosteal)

12q13–15 amplification

MDM2, CDK4, other genes (HMGA2, GLI, SAS)

>70
 
Dysregulated cell growth

Gisselsson. Genes Chromosomes Cancer 2002;33:133

Yoshida. Modern Pathology 2010;23:1279


TKR tyrosine kinase receptor

aThe overall proportion of inflammatory myofibroblastic tumors with ALK gene rearrangement is 35 %

bPercentages indicate the proportion of tumors with abnormal karyotypes which have 12q13–15 or 6p21 chromosomal alterations. (Sources: Heim S & Mitelman F: Cancer Cytogenetics, 3rd Ed., Wiley-Blackwell, New York, 2009; Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer (2012). Mitelman F, Johansson B and Mertens F (Eds.), http://​cgap.​nci.​nih.​gov/​Chromosomes/​Mitelman; Fletcher CD,Akerman M, Dal Cin P, et al. Correlation between clinicopathological features and karyotype in lipomatous tumors. A report of 178 cases from the Chromosomes and Morphology (CHAMP) Collaborative Study Group. Am J Pathol. 1996;148:623–630)

cLoss of INI1 expression by immunohistochemistry occurs in malignant rhabdoid tumors (renal, soft tissue, central nervous system-atypical teratoid/rhabdoid tumor of the CNS), epithelioid sarcoma, and in a variety of other tumors, often with “rhabdoid” features, including renal medullary carcinoma, myoepithelial carcinoma, extraskeletal myxoid chondrosarcoma, and epithelioid malignant peripheral nerve sheath tumors. The link between INI1 expression loss and genomic alterations is strong only in the case of malignant rhabdoid tumors; in the other tumors, the link is not clear, where epigenetic silencing or other mechanisms are a likely cause of INI1 loss of expression

d EWSR1 rearrangement without an identified fusion partner has been reported by FISH in a significant proportion of myoepithelial tumors of soft tissue and bone (approximately 30 % of cases)

eExostosin 1 (EXT1, at 8q24) or exostosin 2 (EXT2, at 11p11–13) gene inactivation causes the multiple osteochondroma (MO) syndrome (previously known as hereditary multiple exostoses, inherited as an autosomal dominant trait) in 65 % and 35 % of cases, respectively. The percentage in the table refers to non-syndromic cases

A recurrent t(7;17)(p15;q21) has been identified in endometrial stromal tumors [12]. Two new zinc finger genes are fused as a result of the translocation: JAZF1 and JJAZ1. Protein products of the zinc finger genes usually function as transcriptional regulators via specific DNA binding through the zinc finger motif. The chimeric protein in endometrial stromal tumors has a tumor-specific mRNA transcript containing 5′ JAZF1 and 3′ JJAZ1 sequences including the zinc finger encoding regions from both parent genes. Since gene expression of wild-type JAZF1 is present in normal endometrial stromal cells, the JAZF1–JJAZ1 fusion gene present in endometrial stromal tumors likely results in aberrant transcriptional regulation in a lineage-specific manner.



Oncogenic Nature of Fusion Transcripts


Sarcomas theoretically develop from mesenchymal stem cells that are present in all compartments of the body. Unlike many epithelial neoplasms, where diverse genetic alterations usually underlie the stepwise progression of precursor lesions leading ultimately to the emergence of malignant clones, soft tissue malignancies have no identifiable precursor lesions and usually have a single genetic alteration typical of a particular type of sarcoma. In addition, chromosomal fusions in soft tissue sarcomas do not seem to represent a form of generalized genomic instability, as occurs with germline TP53 mutations [6] or with microsatellite instability associated with colon carcinoma [13]. Benign tumor counterparts of soft tissue sarcomas usually carry quite different genetic or chromosomal abnormalities or both. For example, the specific sets of chromosomal alterations found in soft tissue lipomas are not among those consistently observed in liposarcoma [14, 15]. Similar to leukemogenesis and lymphomagenesis, the fusion gene in a given sarcoma is speculated to be oncogenic only in a specific cell type at a specific differentiation stage [16] and explains why in some instances the same fusion transcripts can be identified in unrelated tumors. For instance, FUS–ERG is present in both Ewing’s sarcoma (ES)/peripheral neuroectodermal tumor (PNET) and acute myeloid leukemia, while EWSR1–CREB1 is present in both angiomatoid fibrous histiocytoma and clear cell sarcoma, two soft tissue tumors that are clearly distinct both histologically and clinically [17]. In general, the genes involved in sarcoma translocations are transcription factors or cofactors. Many of the chimeric proteins include a strong transcriptional activator N-terminal domain encoded by one partner gene fused with a DNA-binding domain encoded by the other partner gene. In fact, fusion of domains capable of activating transcription with other domains featuring specific DNA-binding function appears to be a common theme shared among neoplasms of mesenchymal derivation, such as soft tissue tumors and leukemia. EWSR1 (and its homologous FUS) is a powerful transcription activator [18] and provides a paradigm for this type of oncogenic mechanism, as also indicated by its “promiscuity” as a fusion partner (Table 37.1).

Only gold members can continue reading. Log In or Register to continue

Stay updated, free articles. Join our Telegram channel

Oct 29, 2016 | Posted by in PATHOLOGY & LABORATORY MEDICINE | Comments Off on Sarcomas and Related Mesenchymal Tumors

Full access? Get Clinical Tree

Get Clinical Tree app for offline access