11 Respiratory system
ANATOMY
TRACHEA
The trachea is about 11 cm long, commencing at the lower border of the cricoid cartilage at the level of the 6th cervical vertebra, and terminating by dividing into the right and left main bronchi at the level of the 5th thoracic vertebra. The trachea is composed of fibroelastic tissue and is prevented from collapsing by a series of cartilaginous rings numbering 15–20. The rings are U-shaped, open posteriorly, where they are flattened, the posterior free end of the cartilaginous rings being covered by smooth muscle (trachealis). The trachea is lined by columnar ciliated epithelium containing numerous goblet cells.
BRONCHI
The trachea terminates at the level of the sternal angle by dividing into the right and left main bronchi (Fig. 11.1). The right main bronchus is wider, shorter and more vertical than the left. It is approximately 2.5 cm long and passes downwards and laterally behind the ascending aorta and SVC to enter the hilum of the lung. The azygos vein arches over it from behind to enter the SVC, while the pulmonary artery lies first below it and then anterior to it. The right main bronchus gives off an upper lobe bronchus just before it enters the lung. It then proceeds into the lung where it divides into the bronchi to the middle and inferior lobes.

Fig. 11.1 The trachea and bronchi.
Source: Rogers A W Textbook of anatomy; Churchill Livingstone, Edinburgh (1992).
The left main bronchus is approximately 5 cm long and passes downwards and laterally below the arch of the aorta, in front of the oesophagus and descending aorta. The pulmonary artery lies at first anteriorly and then above the bronchus. On the left side the main bronchus terminates by dividing into the bronchi to the upper and lower lobes of the left lung shortly after entering the lung.
LUNGS
The lungs (Fig. 11.2) are conical in shape. They conform to the shape of the pleural cavities. Each lung has a blunt apex which reaches above the sternal end of the first rib, a base related to the diaphragm, a convex parietal surface related to the ribs, and a mediastinal surface which is concave and related to the pericardium.
Each lung is subdivided by an oblique fissure into upper and lower lobes, the right lung being further divided by the horizontal fissure to produce a middle lobe. The surface marking of the oblique fissures is best represented by the line of the vertebral border of the scapula with the arm fully elevated. The horizontal fissure of the right lung passes horizontally and medially from the oblique fissure at the level of the fourth costal cartilage. The equivalent of the middle lobe in the left lung is the lingula which lies between the cardiac notch and the oblique fissure.
Bronchopulmonary segments
Each lobar bronchus divides to supply the bronchopulmonary segments of the lung. Each lung has ten segments. These are shown in Fig. 11.3. Each of the bronchopulmonary segments is supplied by a segmental bronchus, artery and vein. There is no communication with adjacent segments. It is thus possible to remove an individual segment without interfering with the function of adjacent segments. Each segment takes its name from that of the supplying segmental bronchus.

Fig. 11.3 Bronchi and bronchopulmonary segments. Right lung: (a) the divisions of the right main bronchus; (b) bronchopulmonary segments: (i) lateral surface, (ii) medial surface. Upper lobe: 1, apical bronchus; 2, posterior bronchus; 3, anterior bronchus. Middle lobe: 4, lateral bronchus; 5, medial bronchus. Lower lobe: 6, apical bronchus; 7, medial basal (cardiac) bronchus; 8, anterior basal bronchus; 9, lateral basal bronchus; 10, posterior basal bronchus.
Left lung: (a) the divisions of the left main bronchus; (b) bronchopulmonary segments: (i) lateral surface; (ii) medial surface. Upper lobe: 1, 2, apicoposterior bronchus; 3, anterior bronchus. Lingula: 4, superior bronchus; 5, inferior bronchus. Lower lobe: 6, apical bronchus; 8, anterior basal bronchus; 9, lateral basal bronchus; 10, posterior basal bronchus.
Blood supply
The pulmonary trunk arises from the right ventricle of the heart behind the third left costal cartilage. It is directed upwards in front of the ascending aorta. It then passes backwards on the left of the ascending aorta and, beneath the aortic arch, it divides into the right and left pulmonary arteries.
Right pulmonary artery
This passes in front of the oesophagus to the root of the right lung, behind the ascending aorta and SVC. Here it lies in front of and between the right main bronchus and its upper lobe branch.
PLEURA
Each pleural cavity is composed of a thin serous membrane invaginated by the lung. The visceral layer of pleura is intimately related to the surface of the lung and is continuous over the root of the lung with a parietal layer which is applied to the inner aspect of the chest wall, the diaphragm and the mediastinum. The two pleural cavities are totally separate from each other. Below the root of the lung the pleura forms a loose fold known as the pulmonary ligament which allows for distension of the pulmonary veins. The lungs conform to the shape of the pleural cavities but do not occupy the full cavity, as they would not be able to expand as in full inspiration.
Surface anatomy
The cervical pleura extends above the sternal end of the first rib. It follows a curved-line drawn from the sternoclavicular joint to the junction of the inner third and outer two-thirds of the clavicle, the apex of the pleura arising about 2.5 cm above the clavicle. The line of the pleura on each side passes from behind the sternoclavicular joint to meet in the midline at the level of the second costal cartilage. The right pleura then passes vertically down to the 6th costal cartilage before crossing the 8th rib in the midclavicular line, the 10th rib in the midaxillary line, and 12th rib at the lateral border of the erector spinae. On the left side the pleural edge reaches the 4th costal cartilage, where it arches out lateral to the border of the sternum, the pleura being separated from the chest wall by the protrusion of the pericardium. The medial ends of the 4th and 5th intercostal spaces are, therefore, notcovered by pleura. Apart from this, its relationshipsare the same as those on the right side. The pleura actually descends below the 12th rib at its medial extremity.
Clinical points
Nerve supply
The pleura receives its nerve supply from the nerves that supply the structures to which it is attached. The visceral pleura receives an autonomic supply from branches of the vagus nerve that supply the lung. It is sensitive only to stretching. The parietal pleura receives a somatic innervation from the adjacent intercostal nerves as they run round the chest wall. The diaphragmatic pleura is supplied by the phrenic nerve. The parietal pleura is, therefore, sensitive to pain, and this may be referred via the intercostal nerves to the abdomen: i.e. diseases of the chest wall and pleura may present as abdominal pain.
THORACIC CAGE
The thoracic cage is formed by the vertebral column behind, the ribs and intercostal spaces on either side, and the sternum and costal cartilages in front.
Ribs
There are 12 pairs of ribs (Fig. 11.4). The first seven pairs are connected anteriorly via their costal cartilages to the sternum. The 8th, 9th and 10th ribs articulate with their costal cartilages, each with the rib above. The 11th and 12th ribs remain free anteriorly and are known as ‘floating ribs’.

Fig. 11.4 Ribs 1, 4 and 12 viewed from the left side. superior view.
posterior view.
Source: Rogers op. cit.
The first, 2nd, 10th, 11th and 12th ribs are atypical. Only the first and 12th are clinically important. The first rib is the shortest, flattest and most curved of the ribs. It is flattened from above downwards. The features of the first rib are shown in Fig. 11.4. The 12th rib is short, has no tubercle, and has only a single facet. There is no angle and no subcostal groove. Its only importance is in the loin approach to the kidney, where its relationship to the pleura is important. The pleura descends below the 12th rib at its medial extremity.
Clinical points
Rib fractures
These may damage underlying or related structures. Fracture of any rib may lead to trauma to the lung and the development of a pneumothorax. Fracture of the left lower ribs may traumatise the spleen. Fractures of the ribs may also traumatise the related intercostal vessels, leading to bleeding intothe chest, i.e. haemothorax.
Coarctation of the aorta
In this condition collateral vessels develop between the vessels above and below the block. The superior intercostal artery, derived from the costocervical trunk of the subclavian artery, supplies blood to the intercostal arteries of the aorta, thus bypassing the narrowing in the aorta. As a consequence, the intercostal vessels dilate and become tortuous because of the increased flow and erode the lower border of the ribs, giving rise to notching which may be seen on a chest x-ray.
Cervical ribs
These occur with an incidence of 1:200 and may be bilateral in 1:500 cases. The rib may be complete, articulating with the transverse process of the7th cervical vertebra behind and with the first rib in front. Occasionally, a cervical rib may have a free distal extremity and, in some cases, is merely represented bya fibrous band. A cervical rib may cause vascular or neurological symptoms. Vascular consequences include poststenotic dilatation of the subclavian artery, caused by local turbulence, and, therefore, the risk of distal emboli. A subclavian aneurysm may also result. It is also associated with Raynaud’s phenomenon. Pressure on the vein may result in subclavian vein thrombosis. A cervical rib may also cause pressure on the lower trunk of the brachial plexus which arches over it. This results in paraesthesia in the dermatomal distribution of C8/T1 together with wasting of the small muscles ofthe hand (myotome T1).
Sternum
This consists of three parts: the manubrium, the body and the xiphoid process.
Manubrium
This is approximately triangular in shape. The medial end of the clavicle articulates with it, as do the first costal cartilage and the upper part of the second costal cartilage on each side. It articulates with the body of the sternum at the angle of Louis (manubriosternal joint).
Body
The body of the sternum is composed of four pieces often known as sternebrae. The lateral margins of the body are notched to receive most of the second and the third to the seventh costal cartilages.
Relations
The manubrium forms the anterior boundary of the superior mediastinum. Its lowest part is related to the arch of the aorta and its upper part to the left brachiocephalic vein and the brachiocephalic, left common carotid, and left subclavian arteries. Its lateral portions are related to the lungs and pleura.
The body of the sternum is related on the right side of the median plain to the right pleura and the thin anterior border of the right lung which intervenes between it and the pericardium. To the left of the median plane, the upper two pieces are related to the left pleura and lung but the lower two are directly related to the pericardium. Clinically, sternal puncture is used to obtain bone marrow. A needle is passed through the cortical bone into the marrow. One should be aware of the posterior relations! The sternum is split for access for open heart surgery, and occasionally a split of the manubrium is required for access to the thymus, retrosternal goitre, or ectopic parathyroid tissue.
Costal cartilages
These connect the upper seven ribs to the sternum and the 8th, 9th and 10th ribs to the cartilage immediately above. They are composed of hyaline cartilage and add resilience to the thoracic cage, protecting it from more frequent fractures. With increasing age they ossify and may be seen as irregular areas of calcification on a chest x-ray.
Intercostal spaces
Typically each intercostal space contains three muscles, comparable to those of the abdominal wall, and an associated neurovascular bundle which runs between the middle and the innermost layers of muscle. The three layers of muscle are: (i) the external intercostal, whose fibres pass downwards and forwards from the rib above to the rib below; the muscle is deficient in front where it is replaced by the anterior intercostal membrane; (ii) the internal intercostal, which runs downwards and backwards and is deficient behind where it is replaced by the posterior intercostal membrane; and (iii) the innermost intercostal, which may cover more than one intercostal space.
The neurovascular bundle runs between the internal intercostal and the innermost intercostal. It consists, from above downwards, of vein, artery and nerve, the vein lying directly in the groove on the undersurface of the corresponding rib. The arrangement of muscles, vessels and nerve is shown in Fig. 11.5.
DIAPHRAGM
The diaphragm (Fig. 11.6) is a dome-shaped septum separating the thorax from the abdomen. It is composed of a peripheral muscular part and a central tendon.
The muscular fibres arise from several sources: the crura, the arcuate ligaments, the ribs and the sternum. The right crus of the diaphragm arises from the front of the bodies of the first three lumbar vertebrae and the intervening intervertebral discs. The left crus arises from the first and second lumbar vertebrae and the intervening disc. The arcuate ligaments are a series of arches, the lateral being a condensation of the fascia overlying quadratus lumborum and the medial of the fascia overlying psoas major. The medial borders of the medial arcuate ligaments join anteriorly over the aorta as the median arcuate ligaments. The costal part of the diaphragm arises from the inner aspect of the lower six ribs and the sternal portion as two small slips from the posterior surface of the xiphisternum.
The central tendon is trefoil in shape and receives the insertion of the muscular fibres. Above, it fuses with the lower part of the pericardium.
There are three main openings in the diaphragm, although strictly speaking the aortic ‘opening’ is not in the diaphragm but lies behind it. The aortic ‘opening’ transmits the abdominal aorta, the thoracic duct, and often the azygos vein. The oesophageal opening lies in the right crus of the diaphragm and transmits the oesophagus, the vagus nerves, and branches of the left gastric artery and vein. The opening for the inferior vena cava lies in the central tendon of the diaphragm and transmits, in addition to the IVC, the right phrenic nerve.
The greater and lesser splanchnic nerves pierce the crura, and the sympathetic chain passes behind the medial arcuate ligament lying on psoas major.
Nerve supply
The diaphragm is supplied by the phrenic nerves (C3, 4, 5) which have long course in the neck and the thorax. Damage to the nerve leads to paralysis of the diaphragm, which results in elevation of the diaphragm seen on x-ray and paradoxical movement on respiration. The phrenic nerve also gives a sensory supply to the central part of the diaphragm. Irritation of the diaphragm, e.g. in peritonitis or pleurisy, results in referred pain to the cutaneous area of supply, i.e. the shoulder tip via dermatome C4. The peripheral part of the diaphragm receives sensory innervation from the lower six intercostal nerves.
ANATOMY OF RESPIRATION
There are two main mechanisms for increasing the volume of the thorax:
Thoracic breathing
During inspiration, the ribs are elevated, and this occurs in two ways, as follows:
Abdominal breathing
This is controlled by the diaphragm. The peripheral muscle fibres of the diaphragm are more or less verticaland take origin from the lower six ribs. When the muscular fibres of the diaphragm contract, the diaphragm descends, increasing the vertical diameter of the thorax. As the central tendon descends, its vertical movement eventually arrests as it reaches the upper surface of the liver. The central tendon then behaves as an origin for the muscle fibres, which now elevate the lower six ribs in the final stages of inspiration. The combination of thoracic and abdominal breathing results in an increase in all diameters of the thorax. This in turn brings about an increase in the negative intrapleural pressure and expansion of the lung tissue occurs. Abdominal and thoracic breathing occur in quiet inspiration. In deep and in forced inspiration, additional muscles are used, i.e. the accessory muscles of respiration. These include sternocleidomastoid, the scalene muscles, pectoralis minor, pectoralis major and serratus anterior.
Expiration
Expiration is normally a passive process produced by the elastic recoil of the lungs and the tissues of the chest wall. However, forced expiration such as in coughing or playing a trumpet requires muscular activity. Such muscles include: rectus abdominus, external oblique, internal oblique, transversus abdominus and latissimus dorsi.
STRUCTURE OF THE RESPIRATORY TREE
The basic structure of the lower respiratory tree is shown in Fig. 11.7. The respiratory tree is designed to transport humidified air into the distal airways and alveoli where exchange between CO2 and oxygen takes place. The trachea is composed of C-shaped plates of cartilage with the curve of the C anteriorly; the ring is completed posteriorly with smooth muscle. The trachea contains mucous glands and is lined with ciliated epithelium. The trachea divides into bronchi and these contain discontinuous pieces of cartilage in their wall together with smooth muscle. They too are lined by columnar ciliated epithelium and contain mucous glands. The cilia beat rhythmically in a thin liquid layer and effectively transport the surface film of mucus and particles out of the lungs by way of the trachea.
The bronchi decrease in diameter and length with each successive branching. The cartilaginous support eventually disappears. In airways of about 1 mm the cartilage disappears completely. By convention all subsequent airways are called bronchioles. Bronchioles contain no cartilage or submucosal mucous glands. They contain cuboidal epithelium with ciliated cells as well as some additional cells which are thought to provide a watery secretion. The most distal air passages are the respiratory bronchioles, which are so-called because the first alveoli open directly into them. Respiratory bronchioles end in several alveolarducts, which are short channels which open into alveolar sacs which contain many alveoli. A single respiratory bronchiole, its alveoli and their blood supply are called a primary lobule or acinus. The alveoli are lined by flattened Type I pneumocytes together with some Type II pneumocytes. Type II cells secrete surfactant and replicate rapidly after injury to alveolar walls. These alveolar cells lie on a basement membrane together with an interstitial matrix including some elastin fibres which separate the air spaces from the pulmonary capillary walls. The structure of the alveolar-capillary membrane permits rapid and efficient diffusion of oxygen and carbon dioxide.
MEDIASTINUM
The mediastinum (Fig. 11.8) is the name given to the space between the two pleural cavities. It extends from the sternum in front to the thoracic vertebrae behind and from the thoracic inlet above to the diaphragm below.
For descriptive purposes it is divided into a superior and an inferior mediastinum, the latter being again subdivided into anterior, middle and posterior.
Superior mediastinum
This is bounded in front by the manubrium sterni and behind by the first four thoracic vertebrae. Above, it continues up to the root of the neck; below, it is continuous with the three divisions of the inferior mediastinum at a level of a line drawn horizontally through the angle of Louis. It contains the lower end of the trachea, the oesophagus, the thoracic duct, the arch of the aorta, the innominate artery, part of the carotid and subclavian arteries, the innominate veins, the upper part of the SVC, the phrenic and vagus nerves, the left recurrent laryngeal nerve, the cardiac nerves, lymphatic glands, and the remnants of the thymus gland.
Anterior mediastinum
This is the space between the two pleural cavities in front of the pericardium and behind the sternum. In children part of the thymus gland may occupy this space, but in the adult it contains only the anterior mediastinal lymph glands.
Middle mediastinum
The middle mediastinum contains the pericardium itself with the heart and great vessels. The phrenic nerve and pericardiacophrenic vessels run down the lateral surface of the pericardium to reach the diaphragm.
Posterior mediastinum
This lies behind the pericardium and the diaphragm below. Anteriorly lie the pericardium and roots of the lungs, with the diaphragm lying anteriorly below. Posteriorly lies the vertebral column from the lower border of the 4th to the 12th thoracic vertebrae. Inferiorly lies the diaphragm and superiorly is a horizontal plane drawn through the angle of Louis. The posterior mediastinum contains the descending thoracic aorta, the oesophagus, the vagus and splanchnic nerves, the azygos and hemiazygos veins, the thoracic duct and the posterior mediastinal lymph glands.
Because of the arrangement of structures in the mediastinum, its appearance is different when viewed from the right and left hand sides. These differences and their relationships to the roots of the lungs are shown in Figs. 11.9 and 11.10.
PHYSIOLOGY
CONTROL OF VENTILATION
The body succeeds in keeping arterial PO2 and PCO2 within remarkably narrow limits. This is made possible by highly developed negative feedback systems that consist of sensors, controllers and effectors. These are summarized in Table 11.1.
Table 11.1 Summary of the basic mechanisms controlling respiration
Controllers
Impulses from the brainstem effect normal automatic respiration:
Other areas of importance include the cortex, which can override, to a large extent, the automatic, subconscious control of breathing. In affective states such as fear or extreme anger the limbic system and hypothalamus can influence respiration.
Effectors
These are the muscles of respiration: the diaphragm, intercostals, abdominal wall muscles and accessory muscles (see anatomy section).
In order for respiration to be effective in extremes of demand these muscles must work in a fully coordinated way, under the auspices of the central control.
Sensors
These are the central chemoreceptors, peripheral chemoreceptors, and several others. In the lung, sensors include primary stretch receptors, irritant receptors and J receptors. In the nose and upper airway there are sensitive irritant receptors, while joints and muscles utilise the gamma stretch receptor and associated reflex.
Central chemoreceptors
The most important receptors involved in respiratory control, they are situated on the ventral surface of the medulla. Here the extracellular fluid (ECF) of the brain surrounds the central chemoreceptors. Changes in hydrogen ion concentration of the ECF cause these receptors to respond. As hydrogen ion concentration increases, so ventilation increases, and the opposite is true. The pH of the ECF is most affected by the cerebrospinal fluid (CSF) hydrogen ion content. CSF is separated from the circulation by the blood-brain barrier. Whilst ions such as hydrogen and bicarbonate do not easily cross the blood-brain barrier, CO2 can cross readily. Thus as arterial PCO2 (PaCO2) rises, CSF PCO2 goes up, liberating hydrogen ions, which in turn lower the pH of the ECF. This stimulates central chemoreceptors to effect increased ventilation. Increasing ventilation decreases arterial PaCO2. An increased PaCO2 also causes cerebral vasodilatation, facilitating more rapid diffusion of CO2 into the CSF.
A feature of CSF is that it has much lower buffering capacity than blood. Small changes in PCO2 effect larger changes in CSF pH than in blood pH. However, bicarbonate can only diffuse slowly across the blood-brain barrier, and so changes in pH of CSF are eventually compensated for by a rise or fall in bicarbonate. This process takes about 36 h to complete, so that if PaCO2 is elevated for a prolonged period the chemoreceptors will ‘reset’, e.g. chronic lung disease, where patients may have an elevated PaCO2 with a normal CSF pH and normal respiratory rates. (See acid-base section.)
Peripheral chemoreceptors
These bodies contain glomus cells, with a large dopamine content. Because of their location, they have a very high blood flow per unit weight. These receptors increase their firing rate in response to:
Curiously the response to a fall in PaO2 begins at about 70 kPa, a state not likely to be encountered naturally. However, the sensitivity of the cells is much greater in the range below 13.5 kPa, when the firing rate increases dramatically.
These receptors are responsible for the decrease in ventilation which occurs in hypoxaemia – a response easily abolished by small doses of morphine or anaesthetic agents. The response to hypoxaemia is the important one. The peripheral chemoreceptors have a much less important response than the central ones to changes in PaCO2.
The response to a change in arterial pH is mediated only by the carotid bodies – hydrogen ions cannot readily cross the blood-brain barrier. A fall in pH will increase ventilation.
Receptors within the lung
Mechanical
Stretch receptors within the lungs discharge in response to distension of the lungs. Impulses are sent via the vagus nerve and result in a decreased respiratory rate. This is often referred to as the Hering-Breuer reflex. This may be important in newborn babies but is not useful for day to day control of respiration.
Receptors outside the lung
Chemical
Receptors found in the nose and upper airway which respond to chemical stimulation, resulting in coughing and sneezing, and laryngeal spasm, which occurs during choking or sometimes during anaesthesia.
Mechanical
Joint and muscle receptors stimulate respiration at the start of exercise, whilst the respiratory muscle contains sensors which relay information on muscle length and help control the force of contraction and possibly the sensation of dyspnoea.
Finally, stimulation of aortic and carotid sinus baroreceptors following increased blood pressure results in hypoventilation or even apnoea, whilst adecrease in blood pressure can cause hyperventilation.
How do these mechanisms combine to control ventilation?
Consider the three main chemical factors which affect respiration:
Arterial CO2
Under normal conditions the most important determinant of ventilation control is the PaCO2. The mechanism is sufficiently sensitive to keep the variation in arterial level of CO2 within about 0.4 kPa. Sedation, alcohol and sleep will all tend to increase PaCO2.
If subjects are given CO2 to breathe then their rate and depth of respiration increase so that for each 0.1 kPa increase in PaCO2 an increase in minute volume of about 1.5 L occurs. If the subject becomes hypoxic the rate of increase in minute volume increases. If the amount of CO2 inspired is allowed to increase to very high levels (15%) then no further increase in minute volume occurs and the subject may become drowsy and exhibit depressed ventilation. Conversely, if PaCO2 levels are allowed to fall (e.g. following hyperventilation), then ventilation becomes depressed. This can easily occur when mechanically ventilating patients.
Arterial O2
Arterial oxygen tensions do not control respiration on a minute to minute basis in the same way as PaCO2. Indeed lowering PaO2 by breathing hypoxic mixtures produces no effect until PaO2 = 6.5 kPa. These are very low levels of arterial O2 and they are not seen in day to day life. They may occur in illness (e.g. pneumonia) or on ascent to high altitude. However, when PaCO2 is raised, the effects of a low PaO2 are seen at levels approaching 13 kPa.
In severe, longstanding, lung disease, patients may exhibit a persistent PaCO2 elevation with a low PaO2. These patients may rely on hypoxaemia to provide an adequate respiratory drive. If oxygen is administered to these patients it may well result in depression of ventilation. This is a relatively rare event and should not prevent the prescription of oxygen in adequate amounts to patients who remain tachypnoeic. It can be predicted by taking arterial blood for baseline gas analysis and then administering oxygen in increasing percentages. If the patient has a ventilatory drive dependent on hypoxaemia then the minute volume will decrease as oxygen is administered, and arterial carbon dioxide will increase. (NB: the response to hypoxaemia is mediated by peripheral chemoreceptors – it has no effect on central chemoreceptors except when hypoxia in the brain directly depresses output from the CNS.)
Arterial pH
As might be expected a decrease in arterial pH gives rise to increased ventilation. pH will, of course, fall as PaCO2 increases, so it is difficult to separate the two phenomena. However, patients who develop a metabolic acidosis exhibit a marked increase in minute volume. This is mediated by peripheral chemoreceptors (the blood-brain barrier is relatively impermeable to hydrogen ions).
MECHANICS OF BREATHING
The major function of the lungs is the transport of gas in and out of the alveoli and the exchange of respiratory gases. This is achieved not just by the lungs, but by the surrounding tissues, bones and muscles.
Elastic properties of the lung
As the thoracic volume increases during inspiration the lung tissues become stretched; the greater the degree of chest expansion, the greater the degree of stretching of the lungs. However this relationship is not entirely linear. Figure 11.11 shows the relationship between the volume of the lung and the negative pressure surrounding it. As the negative pressure increases, so the lung volume increases, up to a point where further negative pressure does not increase lung volume. When the pressure around the lung decreases, the lung volume also decreases, but it does not follow the same curve. This is called hysteresis. The lung volume at any given pressure during deflation is larger than that during inflation.

Fig. 11.11 Compliance and hysteresis. The graph illustrates the differences in compliance between the lungs inflated with air and the lungs inflated with saline. The saline-filled lungs have greater compliance and less hysteresis. The difference can be explained by the lack of surface tension in saline-filled lungs.
The slope of the volume pressure curve (the volume change per unit pressure) is known as the compliance. The usual compliance of the human lung is about 200 mL/cmH2O pressure, but from the slope of the line it can be seen that compliance decreases at higher lung volumes as the lungs become stiffer. Lung compliance can also be reduced, for example, in pulmonary venous engorgement or in alveolar oedema. The compliance of the lung falls if the lung remains unventilated for a long period. This may occur, for example, following anaesthesia, resulting in atelectasis. Lung compliance is decreased by fibrosis of the lung and certain diseases. Age and emphysema increase it.
Because the change in lung volume per unit change in pressure will be larger in a large lung and smaller in a small lung, the compliance per unit volume of lung is often quoted. This is known as the specific compliance.
The elastic properties of the lung are in part due to the elastic tissue clearly visible in histological section. The arrangement of the elastin fibres is also important to the compliance of the tissue, and this has been likened to that of the filaments in nylon stocking.
For all its elastic properties the compliance of the lung would be greatly reduced without the presence of surfactant.
The following is a summary of the major factors affecting compliance:
Surface tension
Surface tension is defined as the force acting along an imaginary line drawn on the surface of a liquid. This force exists because of the strong cohesive forces between molecules along the surface. Its importance in the lung can be demonstrated by comparing the pressure volume behaviour in isolated lungs inflated with either water or air. Lungs inflated with air have a much greater compliance and so are easier to distend than lungs filled with water (Fig. 11.11).
Surfactant promotes several important properties within the lung, as follows:
Regional differences in ventilation
Ventilation of the lung does not occur uniformly. Indeed dependent regions of the lung are much better ventilated than non-dependent regions of the lung. There are two main reasons for this:

Fig. 11.12 Regional differences in ventilation at normal and lower lung volumes. The diagram illustrates the causes of regional differences in ventilation due to the weight of the lung. During normal breathing (right), the base of the lung is on a steeper part of the compliance curve and expands more per unit of negative pressure. The situation is reversed on the left, where, at lower lung volumes, the apex is on the steeper part of the curve.
This situation can be changed dramatically when the lung is ventilating at low volumes. Under these circumstances the lung tissue at the base becomes compressed after full expiration. The intrapleural pressures are now positive at the lung base and much less negative at the apex. When the lung expands, the non-dependent region is in the most advantageous part of the compliance curve, so that its volume will increase rapidly, whilst the dependent lung cannot increase its volume at all until the intrapleural pressures become subatmospheric. This situation can occur during anaesthesia in a spontaneously breathing patient.
Closure of small airways
There is another important effect, which can be observed at low lung volumes. As the volume of the lung decreases during expiration the intrapleural pressure in the dependent regions becomes positive. The small airways begin to close, trapping gas within the distal alveoli. In normal subjects this airway closure only occurs at very low lung volumes. However in patients whose lungs have lost elastic tissue (for example, the elderly or those with emphysema), airway closure occurs at higher lung volumes. This airway closure can begin before the lung has reached its normal postexpiratory resting volume or functional residual capacity ((FRC) see later). The distal alveoli involved may be incompletely ventilated.
Elastic properties of the chest wall
Just as the lung has elastic properties which tend to make it collapse, the chest wall has elastic properties which tend to make it expand. When the two are in equilibrium the lung volume is said to be at functional residual capacity (FRC). The elastic recoil of the lung is balanced by the tendency of the chest to expand and the lung is at the end of a normal expiration. When the lung volume becomes smaller than FRC then intrapleural pressure must be positive.
Sites of airway resistance
As the airways penetrate toward the periphery of the lungs they become narrower, but more numerous. However, although the radii of these terminal bronchi are very small, they do not account for a great deal of resistance. The major site of resistance is in the medium-sized bronchi, and the very small bronchioles contribute very little. Most of the pressure drop across the airways occurs up to the seventh generation of bronchi and less than 20% beyond this point.
Because the peripheral airways contribute so little to resistance, the detection of lung disease here is made much more difficult.
The major factors affecting airway resistance are the following.

Stay updated, free articles. Join our Telegram channel

Full access? Get Clinical Tree

