References
Ahmed SM, Hall AJ, Robinson AE, et al. Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14:725–730.
Aigal S, Claudinon J, Roemer W. Plasma membrane reorganization: A glycolipid gateway for microbes. Biochim. Biophys. Acta. 2015;1853:858–871.
Arnaud J, Tröndle K, Claudinon J, et al. Membrane deformation by neolectins with engineered glycolipid binding sites. Angew. Chem. Int. Ed. 2014;53:9267–9270.
Bally M, Dimitrievski K, Larson G, et al. Interaction of virions with membrane glycolipids. Phys. Biol. 2012;9:026011.
Bally M, Gunnarsson A, Svensson L, et al. Interaction of single viruslike particles with vesicles containing glycosphingolipids. Phys. Rev. Lett. 2011;107:188103.
Bally M, Rydell GE, Zahn R, et al. Norovirus GII.4 virus-like particles recognize galactosylceramides in domains of planar supported lipid bilayers. Angew. Chem. Int. Ed. Engl. 2012;51:12020–12024.
Bok K, Green KY. Norovirus gastroenteritis in immunocompromised patients. N. Engl. J. Med. 2012;367:2126–2132.
Bu W, Mamedova A, Tan M, et al. Structural basis for the receptor binding specificity of Norwalk virus. J. Virol. 2008;82:5340–5347.
Bucardo F, Kindberg E, Paniagua M, et al. Genetic susceptibility to symptomatic norovirus infection in Nicaragua. J. Med. Virol. 2009;81:728–735.
Bucardo F, et al. Predominance of norovirus and sapovirus in Nicaragua after implementation of universal rotavirus vaccination. PLoS One. 2014;9(5):e98201.
Caddy S, Breiman A, le Pendu J, et al. Genogroup IV and VI canine noroviruses interact with histo-blood group antigens. J. Virol. 2014;88:10377–10391.
Cao S, Lou Z, Tan M, et al. Structural basis for the recognition of blood group trisaccharides by norovirus. J. Virol. 2007;81:5949–5957.
Carlsson B, Kindberg E, Buesa J, et al. The G428A nonsense mutation in FUT2 provides strong but not absolute protection against symptomatic GII.4 Norovirus infection. PLoS One. 2009;4:e5593.
Chen Y, Tan M, Xia M, et al. Crystallography of a Lewis-binding norovirus, elucidation of strain-specificity to the polymorphic human histo-blood group antigens. PLoS Pathog. 2011;7:e1002152.
Choi J-M, Hutson AM, Estes MK, et al. Atomic resolution structural characterisation of recognition of histo-blood group antigens by Norwalk virus. Proc. Natl. Acad. Sci. USA. 2008;105:9175–9180.
Currier RL, Payne DC, Staat MA, et al. Innate susceptibility to norovirus infections influenced by FUT2 genotype in a United States pediatric population. Clin. Infect. Dis. 2015;60:1631–1638.
de Rougemont A, Ruvoën-Clouet N, Simon B, et al. Qualitative and quantitative analysis of the binding of GII.4 norovirus variants onto human blood group antigens. J. Virol. 2011;85:4057–4070.
Eierhoff T, Bastian B, Thuenauer R, et al. A lipid zipper triggers bacterial invasion. Proc. Natl. Acad. Sci. U S A. 2014;111:12895–12900.
Ewers H, Roemer W, Smith AE, et al. GM1 structure determines SV40-induced membrane invagination and infection. Nat. Cell. Biol. 2010;12:11–18.
Frenck R, Bernstein DI, Xia M, et al. Predicting susceptibility to norovirus GII.4 by use of a challenge model involving humans. J. Infect. Dis. 2012;206:1386–1393.
Fretz R, Svoboda P, Schorr D, et al. Risk factors for infections with norovirus gastrointestinal illness in Switzerland. Eur. J. Clin. Microbiol. Infect. Dis. 2005;24:256–261.
Gerondopoulos A, Jackson T, Monaghan P, et al. Murine norovirus-1 cell entry is mediated through a non-clathrin-, non-caveolae-, dynamin- and cholesterol-dependent pathway. J. Gen. Virol. 2010;91:1428–1438.
Glass RI, Parashar UD, Estes MK. Norovirus gastroenteritis. N. Engl. J. Med. 2009;361:1776–1785.
Gustavsson L, Andersson LM, Lindh M, et al. Excess mortality following community-onset norovirus enteritis in the elderly. J. Hosp. Infect. 2011;79:27–31.
Hall A. Noroviruses: the perfect human pathogens? J. Infect. Dis. 2012;205:1622–1626.
Hall AJ, Eisenbart VG, Etingue AL, et al. Epidemiology of foodborne norovirus outbreaks, United States, 2001-2008. Emerg. Infect. Dis. 2012;18:1566–1573.
Hall AJ, Vinjé J, Lopman B, et al. Center for Disease Control and Prevention. Updated norovirus outbreak management and disease prevention guidelines. MMWR. 2011;60:1–15.
Halperin T, Vennema H, Koopmans M, et al. No association between histo-blood group antigens and susceptibility to clinical infections with genogroup II norovirus. J. Infect. Dis. 2008;197:63–65.
Han L, Tan M, Xia M, et al. Gangliosides are ligands for human noroviruses. J. Am. Chem. Soc. 2014;136:12631–12637.
Hansman GS, Biertümpfel C, Georgiev I, et al. Crystal structures of GII.10 and GII. 12 norovirus protruding domains in complex with histo-blood group antigens reveal details for a potential site of vulnerability. J. Virol. 2011;85:6687–6701.
Harrington PR, Lindensmith L, Yount B, et al. Binding of Norwalk virus-like particles to ABH histo-blood group antigens is blocked by antisera from infected human volunteers or experimentally vaccinated mice. J. Virol. 2002;76:12325–12343.
Hemming M, et al. Major reduction of rotavirus, but not norovirus, gastroenteritis in children seen in hospital after the introduction of RotaTeq vaccine into the National Immunization Programme in Finland. Eur. J. Pediatr. 2013;172:739–746.
Hu L, Crawford SE, Czako R, et al. Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nature. 2012;485:256–259.
Huang P, Farkas T, Zhong W, et al. Norovirus and histo-blood group antigens: demonstration of a wide spectrum of strain specificities and classification of two major binding groups among multiple binding patterns. J. Virol. 2005;79:6714–6722.
Huang P, Xia M, Tan M, et al. Spike protein VP8* of human rotavirus recognizes histo-blood group antigens in a type-specific manner. J. Virol. 2012;86:4833–4843.
Huang PW, Farkas T, Marionneau S, et al. Norwalk-like viruses bind to ABO, Lewis and secretor histo-blood group antigens but different strains bind to distinct antigens. J. Infect. Dis. 2003;188:19–31.
Hutson AM, Airaud F, Le Pendu J, et al. Norwalk virus infection associates with secretor status genotyped from sera. J. Med. Virol. 2005;77:116–120.
Imbert-Marcille B-M, Barbé L, Dupé M, et al. A FUT2 gene common polymorphism determines resistance to rotavirus A of the P [8] genotype. J. Infect. Dis. 2014;209:1227–1230.
Johannes L, Wunder C, Bassereau P. Bending “on the rocks”—a cocktail of biophysical modules to build endocytic pathways. Cold Spring Harbor Perspect. Biol. 2014;6:a016741.
Jones MK, Watanabe M, Zhu S, et al. Enteric bacteria promote human and mouse norovirus infection of B cells. Science. 2014;346:755–759.
Kambhampati A, Payne DC, Costantini V, Lopman B. Host genetic susceptibility to enteric viruses: a systematic review and metaanalysis. Clin. Infect. Dis. 2016;62:11–18.
Katayama K, Murakami K, Sharp TM, et al. Plasmid-based human norovirus reverse genetics system produces reporter-tagged progeny virus containing infectious genomic RNA. Proc. Natl. Acad. Sci. USA. 2014;111:E4043–E4052.
Kindberg E, Akerlind B, Johnsen C, et al. Host genetic resistance to symptomatic norovirus (GGII.4) infections in Denmark. J. Clin. Microbiol. 2007;45:2720–2722.
Koo HL, et al. Noroviruses: the most common pediatric viral enteric pathogen at a large unviersity hospital after introduction of rotavirus vaccination. J. Pediatric Infect. Dis. Soc. 2013;2(1):57–60.
Koppisetty CA, Nasir W, Strino F, et al. Computational studies on the interaction of ABO-active saccharides with the norovirus VA387 capsid protein can explain experimental binding data. J. Comput. Aided Mol. Des. 2010;24:423–431.
Lakshminarayan R, Wunder C, Becken U, et al. Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nat. Cell. Biol. 2014;16:595–606.
Larsson MM, Rydell GE, Grahn A, et al. Antibody prevalence and titer to norovirus (genogroup II) correlate with secretor (FUT2) but not with ABO phenotype or Lewis (FUT3) genotype. J. Infect. Dis. 2006;194:1422–1427.
Lindesmith L, Moe C, Lependu J, et al. Cellular and humoral immunity following Snow Mountain virus challenge. J. Virol. 2005;79:2900–2909.
Lindesmith L, Moe CL, Marionneau S, et al. Human susceptibility and resistance to Norwalk virus infection. Nat. Med. 2003;9:548–553.
Lindesmith LC, Donaldson EF, Lobue AD, et al. Mechanisms of GII. 4 norovirus persistence in human populations. PLoS Med. 2008;5:e31.
Lopman BA, Trivedi T, Vicuna Y, et al. Norovirus infection and disease in an Ecuadorian birth cohort: Association of certain norovirus genotypes with host FUT2 secretor status. J. Infect. Dis. 2015;211:1813–1821.
Lowe JB. The blood group-specific human glycosyltransferases. Baillieres Clin. Haematol. 1993;6:465–492.
Macher BA, Galili U. The Gal〈1,3Gal®1,4GlcNAc-R (〈-Gal) epitope: A carbohydrate of unique evolution and clinical relevance. Biochem. Biophys. Acta. 2008;1780:75–88.
Marionneau S, Cailleau-Thomas A, Rocher J, et al. ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world. Biochimie. 2001;83:565–573.
Marionneau S, Ruvoen N, Le Moullac-Vaidye B, et al. Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology. 2002;122:1967–1977.
Martinez MA, Lopez S, Arias CF, et al. Gangliosides have a functional role during rotavirus cell entry. J. Virol. 2013;87:1115–1122.
Mesquita JR, Barclay L, Nascimento MS, et al. Novel norovirus in dogs with diarrhea. Emerg. Infect. Dis. 2010;16:980–982.
Meyer E, Ebner W, Scholz R, et al. Nosocomial outbreak of norovirus gastroenteritis and investigation of ABO histo-blood group type in infected staff and patients. J. Hosp. Infect. 2004;56:64–66.
Miyoshi M, Yoshizumi S, Sato C, et al. Relationship between ABO histo-blood group type and an outbreak of norovirus gastroenteritis among primary and junior high school students: results of questionnaire-based study. Kansenshogaku Zasshi. 2005;79:664–671.
Nasir W, Bally M, Zhdanov VP, et al. Interaction of virus-like particles with vesicles containing glycolipids: Kinetics of detachment. J. Phys. Chem. B. 2015;119:11466–11472.
Nasir W, Frank M, Koppisetty CA, et al. Lewis histo-blood group alpha1,3/alpha1,4 fucose residues may both mediate binding to GII.4 noroviruses. Glycobiology. 2012;22:1163–1172.
Neu U, Stehle T, Atwood WJ, The Polyomaviridae:. Contributions of virus structure to our understanding of virus receptors and infectious entry. Virology. 2009;384:389–399.
Nilsson J, Rydell GE, Le Pendu J, et al. Norwalk virus-like particles bind specifically to A, H and difucosylated Lewis but not to B histo-blood group active glycosphingolipids. Glycoconj. J. 2009;26(9):1171–1180.
Nordgren J, Kindberg E, Lindgren PE, et al. Norovirus gastroenteritis outbreak with a secretor-independent susceptibility pattern, Sweden. Emerg. Infect. Dis. 2010;16:81–87.
Nordgren J, Nitiema LW, Ouermi D, et al. Host genetic factors affect susceptibility to norovirus infections in Burkina Faso. PLoS One. 2013;8:e69557.
Nordgren J, Sharma S, Bucardo F, et al. Both Lewis and secretor status mediate susceptibility to rotavirus infections in a rotavirus genotype dependent manner. Clin. Infect. Dis. 2014;59:1567–1573.
Otto PH, Clarke IN, Lambden PR, et al. Infection of calves with bovine norovirus GIII.1 strain Jena virus: an experimental model to study the pathogenesis of norovirus infection. J. Virol. 2011;85:12013–12021.
Patel MM, Hall AJ, Vinje J, et al. Noroviruses: a comprehensive review. J. Clin. Virol. 2009;44:1–8.
Payne DC, et al. Norovirus and medically attended gastroenteritis in U.S. children. N Engl. J. Med. 2013;368(12):1121–1130.
Perry JW, Wobus CE. Endocytosis of murine norovirus 1 into murine macrophages is dependent on dynamin II and cholesterol. J. Virol. 2010;84:6163–6176.
Rockx BH, Vennema H, Hoebe CJ, et al. Association of histo-blood group antigens and susceptibility to norovirus infections. J. Infect. Dis. 2005;191:749–754.
Roemer W, Berland L, Chambon V, et al. Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature. 2007;450:670–675.
Ruvoën-Clouet N, Belliot G, Le Pendu J. Noroviruses and histo-blood groups: the impact of common host genetic polymorphisms on virus transmission and evolution. Rev. Med. Virol. 2013;23:355–366.
Ruvoën-Clouet N, Ganière JP, André-Fontaine G, et al. Binding of Rabbit Hemorrhagic Disease Virus to antigens of the ABH histo-blood group family. J. Virol. 2000;74:11950–11954.
Ruvoën-Clouet N, Magalhaes A, Marcos-Silva L, et al. Increase in genogroup II.4 norovirus host spectrum by CagA-positive Helicobacter pylori infection. J. Infect. Dis. 2014;210:183–191.
Rydell GE, Dahlin AB, Hook F, et al. QCM-D studies of human norovirus VLPs binding to glycosphingolipids in supported lipid bilayers reveal strain-specific characteristics. Glycobiology. 2009;19:1176–1184.
Rydell GE, Nilsson J, Rodriguez-Diaz J, et al. Human noroviruses recognize sialyl Lewis x neoglycoprotein. Glycobiology. 2009;19:309–320.
Rydell GE, Svensson L, Larson G, et al. Human GII.4 norovirus VLP induces membrane invaginations on giant unilamellar vesicles containing secretor gene dependent alpha1,2-fucosylated glycosphingolipids. Biochim. Biophys. Acta. 2013;1828:1840–1845.
Schmidt M, Chiorini JA. Gangliosides are essential for bovine adeno-associated virus entry. J. Virol. 2006;80:5516–5522.
Shirato H, Ogawa S, Ito H, et al. Noroviruses distinguish between type 1 and type 2 histo-blood group antigens for binding. J. Virol. 2008;82:10756–10767.
Storry JR, Olsson ML. Genetic basis of blood group diversity. Br. J. Haematol. 2004;126:759–771.
Takanashi S, Wang Q, Chen N, et al. Characterization of emerging GII.g/GII.12 noroviruses from a gastroenteritis outbreak in the United States in 2010. J. Clin. Microbiol. 2011;49:3234–3244.
Tamura M, Natori K, Kobayashi M, et al. Genogroup II noroviruses efficiently bind to heparan sulfate proteoglycan associated with the cellular membrane. J. Virol. 2004;78:3817–3826.
Tan M, Jiang X. Norovirus-host interaction: Multi-selections by human histo-blood group antigens. Trends Microbiol. 2011;19:382–388.
Tan M, Jiang X. Histo-blood group antigens: a common niche for norovirus and rotavirus. Expert Rev. Mol. Med. 2014;16:e5.
Tan M, Jin M, Xie H, et al. Outbreak studies of a GII-3 and a GII-4 norovirus revealed an association between HBGA phenotypes and viral infection. J. Med. Virol. 2008;80:1296–1301.
Taube S, Perry JW, Yetming K, et al. Ganglioside-linked terminal sialic acid moieties on murine macrophages function as attachment receptors for murine noroviruses. J. Virol. 2009;83:4092–4101.
Thorven M, Grahn A, Hedlund KO, et al. A homozygous nonsense mutation (428G– > A) in the human secretor (FUT2) gene provides resistance to symptomatic norovirus (GGII) infections. J. Virol. 2005;79:15351–15355.
Verdaguer N, Ferrero D, Murthy MR. Viruses and viral proteins. IUCrJ. 2014;1:492–504.
Vinjé J. Advances in laboratory methods for detection and typing of norovirus. J. Clin. Microbiol. 2015;53:373–381.
Yazawa S, Yokobori T, Ueta G, et al. Blood group substances as potential therapeutic agents for the prevention and treatment of infection with noroviruses proving novel binding patterns in human tissues. PLoS One. 2014;9:e89071.
Zakhour M, Maalouf H, Di Bartolo I, et al. Bovine norovirus: carbohydrate ligand, environmental contamination, and potential cross-species transmission via oysters. Appl. Environ. Microbiol. 2010;76:6404–6411.
Zakhour M, Ruvoën-Clouet N, Charpilienne A, et al. The alphaGal epitope of the histo-blood group antigen family is a ligand for bovine norovirus Newbury2 expected to prevent cross-species transmission. PLoS Pathog. 2009;5:e1000504.
Zheng DP, Ando T, Fankhauser RL, et al. Norovirus classification and proposed strain nomenclature. Virology. 2006;346:312–323.