Chemical and Genetic Diversity of Wolfberry



Fig. 1.1
Ripen fruits of L. ruthenicum (a), L. barbarum (b), and L. chinense (c)




Table 1.1
Morphological differences and geographic distribution of L. chinense, L. barbarum, L. ruthenicum
























Species

Morphological identity

Geographic distribution

L. chinense M

Leaf blade ovate, rhombic, lanceolate, or linear-lanceolate. Pedicel 1–2 cm. Calyx 3–5-divided to halfway, lobes densely ciliate. Corolla tube shorter than or subequaling lobes, lobes pubescent at margin. Stamens filaments villous slightly above base. Berry red, ovoid or oblong. Seeds numerous, yellow

In China: Anhui, Fujian, Gansu, Guangdong, Guangxi, Guizhou, Hainan, Hebei, Heilongjiang, Henan, Hubei, Hunan, Jiangsu, Jiangxi, Jilin, Liaoning, Nei Mongol, Ningxia, Qinghai, Shaanxi, Shanxi, Sichuan, Yunnan, Zhejiang. Taiwan, Japan, Korea, Mongolia, Nepal, Pakistan, Thailand, SW Asia, Europe

L. barbarum L

Leaves lanceolate or long elliptic. Pedicel 1–2 cm. Calyx usually 2-lobed, lobes 2- or 3- toothed at apex. Corolla tube 8–10 mm, obviously longer than limb and lobes; lobes 5–6 mm, spreading, margin glabrescent. Berry red or orange-yellow, oblong or ovoid. Seeds usually 4–20, brown-yellow

In China: Ningxia, Gansu, Qinghai, Xinjiang

L. ruthenicum M

Shrubs copiously armed. Leaves subsessile; leaf succulent, linear or subcylindric, rarely linear-oblanceolate. Pedicel 5–10 mm. Calyx irregularly 2–4-lobed, lobes sparsely ciliate. Corolla lobes oblong ovate, not ciliate. Stamens filaments sparsely villous above base. Fruiting calyx slightly inflated. Berry purple-black, globose, sometimes emarginate. Seeds brown

In China: Gansu, Nei Mongol, Ningxia, Qinghai, N Shaanxi, Xinjiang, Xizang. Afghanistan, Kazakhstan, Kyrgyzstan, Mongolia, Pakistan, Russia, Tajikistan, Turkmenistan, Uzbekistan, SW Asia, Europe




1.4 Chemical Diversity in Leaf and Fruits of Wolfberry


Polysaccharides represent quantitatively the most important group of substances in the fruit of L. barbarum. which are estimated to comprise 3–8 % of the dried fruits (Amagase and Farnswoeth 2011). More than 30 polysaccarides have been isolated from the fruit of L. barbarum, L. chinense, and L. ruthenium (Table 1.2). The molecular weight of polysaccharides varies greatly in different species, which might lead to the different pharmacological function.


Table 1.2
Polysaccharides in fruits of L. chinense, L. barbarum, L. ruthenicum














































































































































































































































Glycoconjugate

MW

Carbohydrate content

Monosaccharides (molar ratio or %)

Reference

L. barbarum

LbGp1

88,000
 
Ara, Gla, Glc (2.5:1.0:1.0)

(Yao et al. 2011)

LbGp2

68,200

90.7

Ara, Gal (4:5)

(Peng and Tian 2001)

LbGp3

92,500

93.6

Ara, Gal (1:1)

(Huang et al. 1998, 1999)

LbGp4

214,800

85.6

Ara, Gal, Rha, Glc (1.5:2.5:0.43:0.23)

(Huang et al. 1998; Peng et al. 2001a)

LbGp5

23,700

8.6

Rha, Ara, Xyl, Gal, Man, Glc (0.33:0.52:0.42:0.94:0.85:1)

(Huang et al. 1998)

LbGp5B

23,700
 
Rha, Ara, Glc, Gal, (0.1:1:1.2:0.3), Galu (0.9)

(Peng et al. 2001b)

LBP3p

157,000

92.4

Gal, Glc, Rha, Ara, Man, Xyl (1:2.12:1.25:1.10:1.95:1.76)

(Gan et al. 2004)

LBPC2

12,000

92.8

Xyl, Rha, Man (8.8:2.3:1)

(Zhao et al. 1996, 1997)

LBPC4

10,000

95

Glc

(Zhao et al. 1996, 1997)

LBPA1

18,000
 
Heteroglycan

(Zhao et al. 1997)

LBPA3

66,000
 
Ara, Gal (1.2:1)

(Zhao et al. 1997)

LBP1a-1

11,500
 
Glc

(Duan et al. 2001)

LBP1a-2

9400
 
Glc

(Duan et al. 2001)

LBP3a-1

10,300
 
GalA

(Duan et al. 2001)

LBP3a-2

8200
 
GalA

(Duan et al. 2001)

LBPF1

150,000

48.2
 
(Chen et al. 2008)

LBPF2

150,000

30.5
 
(Chen et al. 2008)

LBPF3

150,000

34.5
 
(Chen et al. 2008)

LBPF4

150,000

20.3
 
(Chen et al. 2008)

LBPF5

150,000

23.5
 
(Chen et al. 2008)

LBPB1

18,000
 
Ara, Glc (1:3.1)

(Zhao et al. 1996, 1997)

PLBP

121,000
   
(Liang et al. 2011)

LBP-IV

418,000
 
Rha, Ara, xyl, glc, Gal (1.61:3.82:03.44:7.54:1.00)

(Liu et al. 2012)

L. chinense

Cp-1-A

10,000

87.8

Ara, Xyl (1:1)

(Qin et al. 2000)

Cp-1-B

11,000

89.4

Ara

(Qin et al. 2000)

Cp-1-C

42,000

92.4

Ara, Gal (3:1)

(Qin et al. 2000)

Cp-1-D

23,000

90.7

Ara, Gal (1:1)

(Qin et al. 2000)

Cp-2-A

89,000

88.3

Ara (50.6), Gal (22.8), Man (8.4), Rha (5.9), Glc (5.6)

(Qin et al. 2001)

Cp-2-B

89,000

88.3

Ara (45.5), Gal (47.4)

(Qin et al. 2001)

Hp-2-A

8000

87.9

Ara (70.6), Gal (13.5)

(Qin et al. 2001)

Hp-2-B

11,000

89.9

Ara (84.2), Gal (10.7)

(Qin et al. 2001)

Hp-2-C

120,000

90.7

Ara (49.5), Gal (40.8), Fuc (5.9)

(Qin et al. 2001)

Hp-0-A

23,000
 
Ara

(Potterat 2010)

L. ruthenicum

LRGP1

56,200
 
Rha, Ara, xyl, Man, glc, Gal (0.65:10.71:0.33:0.67:1:10.41)

(Peng et al. 2012a)

LRP4-A

105,000
 
Rha, Ara, glc, Gal (1:7.6:0.5:8.6)

(Lv et al. 2013)

LRGP3

75,600
 
Rha, Ara, Gal (1.0:14.9:10.4)

(Peng et al. 2012b)

As to the color regents in wolfberry, the reddish-orange color of L. barbarum and L. chinense is derived from carotenoids and their esters, which are the second major group of metabolites. Twelve carotenoids and their esters were identified in the genus Lycium (Table 1.2.). The highest content of carotenoids in ripen red berry is zeaxanthin dipalmitate which counts for 75 % of total carotenoids (508.90 μg g− 1 fresh weight (FW) in ripen fresh fruit) (Liu et al. 2014). Although there is very low level of total carotenoid (34.46 μg g− 1 FW), with 18.01μg g− 1 FW of β-carotene, in green fruits of L. ruthenicum, the content of total carotenoid in ripen black berry is undetectable (Liu et al. 2014). The zeaxanthin and β-Cryptoxanthin are undetectable both in green and ripen fruits of L. ruthenicum (Liu et al. 2014). As to the black color in ripen fruits of L. ruthenicum, ten anthocyanins were identified using HPLC-DAD-MS/MS (Zheng et al. 2011), with the highest content of pentunidin-3-O-rutinoside (trans-p-coumaroyl)-5-O-glucoside which counts 95 % of total flavonoids (Zeng et al. 2014). Consistent with this, anthocyanin content in L. ruthenicum increased steadily and reached maximum levels (10.37 OD534/g) at the ripening stage, while anthocyanin was undetectable at all stages in L. barbarum fruits (Zeng et al. 2014).

Other phytochemicals include flavonoids, alkaloids, amides, peptides, anthraquinones, coumarins, lignanoids, terpenoids, steroids, and their derivatives, organic acids, and glycolipids are summarized in Table 1.3. Kim et al. (1997c) identified 45 volatile flavor components in L. chinense leaves including four acids, 15 alcohols, seven aldehydes, two esters, three furans, nine hydrocarbons, and three others. Sannai et al. (1983) identified 36 neutral volatile compounds in L. chinense fruits. Fifty-four volatile components including twelve alcohols, twelve esters, seven aldehydes, six acids, five hydrocarbons, eight ketones, one furan, and three pyrazines were detected in the fruit of L. chinense (Yao et al. 2011). Twenty-one compounds from the essential oil of L. barbarum fruits and 18 compounds from the essential oil of L. ruthenicum fruits were identified by GC/MS (Altintas et al. 2006). 1β-Amino-3β, 4β, 5α-trihydroxycycloheptane, digupigan A, and a tryptophane glycoside, were only isolated from the root barks of L. chinense (Asano et al. 1997; Yahara et al. 1989; Wei and Liang 2003). The only one lignin, (+)-Lyoniresinol 3αOβd-glucopyranoside was isolated from the root bark of L. chinense (Han et al. 2002; Lee et al. 2005). Two compounds were newly identified from the acetone extract of dry Goji berry, 3-(3-hydroxy-4-methoxyphenyl)-N-[2-(4-methoxyphenyl)ethyl]-(2E)-Propenamide, and 3-(4-hydroxy-3-methoxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]-2-Propenamide (Personal communication with Dr. Minghua Qiu).


Table 1.3
Chemical constituents of L. barbarum, L. chinense, and L. ruthenicum




































































































































































































































































































































































































































































Compound name

L. barbarum

L. chinense

L. ruthenicum

Carotenoids and their esters

β-Carotene

Fruit (Yao et al. 2011)

Fruit/leaf (Yao et al. 2011)
 

Zeaxanthin

Fruit (Yao et al. 2011)

Fruit (Yao et al. 2011)
 

β-Cryptoxanthin

Fruit (Yao et al. 2011)

Fruit (Yao et al. 2011)
 

Zeaxanthinmonopalmitate

Fruit (Yao et al. 2011)

Fruit (Yao et al. 2011)
 

Zeaxanthindipalmitate

Fruit (Yao et al. 2011)

Fruit (Kim et al. 1997b)
 

Zeaxanthinmonomyristate

Fruit (Yao et al. 2011)
   

Zeaxanthinmyristate/palmitate

Fruit (Yao et al. 2011)
   

β-Cryptoxanthinpalmitate

Fruit (Yao et al. 2011)
   

Violaxanthindipalmitate

Fruit (Yao et al. 2011)
   

Mutatoxanthindipalmitate

Fruit (Yao et al. 2011)
   

Antheraxanthindipalmitate

Fruit (Yao et al. 2011)
   

Lutein
 
Fruit/ leaf (Yao et al. 2011)
 

Flavonoids

Quercetin

Fruit/ leaf/flower (Yao et al. 2011)

Fruit/leaf (Miean and Mohamed 2001)
 

Kaempferol

Fruit/ leaf/flower (Yao et al. 2011)
   

Myricetin

Fruit (Le et al. 2007)
   

Rutin

Fruit/leaf (Yao et al. 2011)

Fruit/leaf/root (Yao et al. 2011)
 

Isorhamnetin 3-O-rutinoside

Fruit (Inbaraj et al. 2010)
   

Kaempferol-3-O-rutinoside

Fruit (Inbaraj et al. 2010)
   

Hesperidin

Fruit (Inbaraj et al. 2010)
   

Apigenin
 
Leaf/root bark (Miean and Mohamed 2001)
 

Luteolin
 
Leaf (Zou 2002)
 

Acacetin
 
Leaf (Zou 2002)
 

3, 5, 7, 3′-Tetrahydroxy-6, 4′, 5′-trimethoxyflavone
 
Leaf (Zou 2002)
 

Morin
 
Fruit (Qian et al. 2004)
 

Acatein 7-O-rhamnosyl-(1-6)-glucopyranoside
 
Leaf (Zou 2002)
 

Quercetin 3-O-sophoroside
 
Leaf (Yao et al. 2011)
 

Quercetin 7-O-glucoside 3-O-glucosyl-(1-2)-galactopyranoside
 
Leaf (Yao et al. 2011)
 

Kaempferol 3-O-sophoroside
 
Leaf (Yao et al. 2011)
 

Kaempferol 7-O-glucoside 3-O-glucosyl-(1-2)-galactoside
 
Leaf (Yao et al. 2011)
 

Linarin
 
Leaf (Zou 2002; Wei and Liang 2003)
 

Alkaloids

Atropine

Fruit/shoot/root (Harsh 1989; Adams et al. 2006)
   

Hyoscyamine

Fruit/ shoot/root (Harsh 1989)
   

N a -[(E)-Cinnamoyl]histamine

Leaf (Yao et al. 2011)
   

Betaine

Fruit/ leaf/ root bark (Yao et al. 2011)
   

Melatonin

Fruit (Yao et al. 2011)
   

Calystegine A3
 
Root bark (Asano et al. 1997)
 

Calystegine A5
 
Root bark (Asano et al. 1997)
 

Calystegine A6
 
Root bark (Asano et al. 1997)
 

Calystegine A7
 
Root bark (Asano et al. 1997)
 

Calystegine B1
 
Root bark (Asano et al. 1997)
 

Calystegine B2
 
Root bark (Asano et al. 1997)
 

Calystegine B3
 
Root bark (Asano et al. 1997)
 

Calystegine B4
 
Root bark (Asano et al. 1997)
 

Calystegine B5
 
Root bark (Asano et al. 1997)
 

Calystegine C1
 
Root bark (Asano et al. 1997)
 

Calystegine C2
 
Root bark (Asano et al. 1997)
 

Calystegine N1
 
Root bark (Asano et al. 1997)
 

N-Methylcalystegine B2
 
Root bark (Asano et al. 1997)
 

N-Methylcalystegine C1
 
Root bark (Asano et al. 1997)
 

Fagomine
 
Root bark (Asano et al. 1997)
 

6-Deoxyfagomine
 
Root bark (Asano et al. 1997)
 

4-[2-Formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl] butanoic acid
 
Fruit (Chin et al. 2003)
 

4-[2-Formyl-5-(methoxymethyl)-1H-pyrrol-1-yl] butanoic acid
 
Fruit (Chin et al. 2003)
 

4-[2-Formyl-5-(methoxymethyl)-1H-pyrrol-1-yl] butanoate
 
Fruit (Chin et al. 2003)
 

Alkaloid I
 
Root bark (Yao et al. 2011)
 

Alkaloid I
 
Root bark (Yao et al. 2011)
 

Kukoamine A
 
Root bark (Funayama et al. 1980)
 

Kukoamine B
 
Root bark (Yao et al. 2011)
 

Betaine
 
Fruit/ leaf/root bark/ root (Yao et al. 2011)
 

Betaine hydrochloride
 
Root bark (Zhou et al. 1996)
 

Choline
 
Root/ root bark (Yao et al. 2011)
 

9-Formylharman
 
Fruit (Han et al. 1985)
 

1-(Methoxycarbonyl)-β-carboline
 
Fruit (Han et al. 1985)
 

Perlolyrine
 
Fruit (Han et al. 1985)
 

Amides

Lyciumide A

Fruit (Yao et al. 2011)
   

3-(3-Hydroxy-4-methoxyphenyl)-N-[2-(4- methoxyphenyl) ethyl]-(2E)-Propenamide

Fruit (Personal communication with Dr. Minghua Qiu)
   

3-(4-Hydroxy-3-methoxyphenyl)-N-[2-(4- hydroxyphenyl) ethyl]-2-Propenamide

Fruit (Personal communication with Dr. Minghua Qiu)
   

N-(α,β-Dihydrocaffeoyl)tyramine
 
Root bark (Han et al. 2002; Lee et al. 2004)
 

N-[(E)-Caffeoyl]tyramine
 
Root bark (Han et al. 2002; Lee et al. 2004)
 

N-[(Z)-Caffeoyl]tyramine
 
Root bark (Han et al. 2002; Lee et al. 2004)
 

N-[(E)-Feruloyl]octopamine
 
Root bark (Lee et al. 2004)
 

(2S, 3R, 4E, 8Z)-1-O-(βd -Glucopyranosyl)-2-(palmitoylamino)octadecasphinga-4,8-diene
 
Fruit(Kim et al. 1997a, 2000)
 

(2S, 3R, 4E, 8Z)-1-O-(βd -Glucopyranosyl)-2-[(2-hydroxypalmitoyl)amino]sphinga-4,8-diene
 
Fruit/suspension culture stem (Kim et al. 1997a; Jang et al. 1998)
 

Peptides

Lyciumamide
 
Stem/root bark (Noguchi et al. 1984)
 

Lyciumins A
 
Root bark (Yahara et al. 1989)
 

Lyciumins B
 
Root bark (Yahara et al. 1989)
 

Lyciumins C
 
Root bark (Yahara et al. 1993)
 

Lyciumins D
 
Root bark (Yahara et al. 1993)
 

Anthraquinones

Emodin
 
Root bark (Wei and Liang 2002)
 

Physcion
 
Root bark (Wei and Liang 2002)
 

1, 3, 6-Trihydroxy-2-methyl-9, 10-anthraqui-none
 
Root bark (Yao et al. 2011)
 

1, 3, 6-Trihydroxy-2-methyl-9, 10-anthraquinone 3-O-(rhamnopyranosyl)-(1-2)-6′-acetylglucopyranoside
 
Root bark (Yao et al. 2011)
 

Coumarins

Scopoletin

Fruit/leaf (Yao et al. 2011)
   

Scopoletin
 
Leaf/root bark (Zhou et al. 1996; Wei and Liang 2002; Hansel and Huang 1977)
 

Scopolin
 
Root bark (Wei and Liang 2002)

Only gold members can continue reading. Log In or Register to continue

Stay updated, free articles. Join our Telegram channel

Jun 28, 2017 | Posted by in PHARMACY | Comments Off on Chemical and Genetic Diversity of Wolfberry

Full access? Get Clinical Tree

Get Clinical Tree app for offline access