Chemical and Genetic Diversity of Wolfberry

Fig. 1.1
Ripen fruits of L. ruthenicum (a), L. barbarum (b), and L. chinense (c)
Table 1.1
Morphological differences and geographic distribution of L. chinense, L. barbarum, L. ruthenicum
Species
Morphological identity
Geographic distribution
L. chinense M
Leaf blade ovate, rhombic, lanceolate, or linear-lanceolate. Pedicel 1–2 cm. Calyx 3–5-divided to halfway, lobes densely ciliate. Corolla tube shorter than or subequaling lobes, lobes pubescent at margin. Stamens filaments villous slightly above base. Berry red, ovoid or oblong. Seeds numerous, yellow
In China: Anhui, Fujian, Gansu, Guangdong, Guangxi, Guizhou, Hainan, Hebei, Heilongjiang, Henan, Hubei, Hunan, Jiangsu, Jiangxi, Jilin, Liaoning, Nei Mongol, Ningxia, Qinghai, Shaanxi, Shanxi, Sichuan, Yunnan, Zhejiang. Taiwan, Japan, Korea, Mongolia, Nepal, Pakistan, Thailand, SW Asia, Europe
L. barbarum L
Leaves lanceolate or long elliptic. Pedicel 1–2 cm. Calyx usually 2-lobed, lobes 2- or 3- toothed at apex. Corolla tube 8–10 mm, obviously longer than limb and lobes; lobes 5–6 mm, spreading, margin glabrescent. Berry red or orange-yellow, oblong or ovoid. Seeds usually 4–20, brown-yellow
In China: Ningxia, Gansu, Qinghai, Xinjiang
L. ruthenicum M
Shrubs copiously armed. Leaves subsessile; leaf succulent, linear or subcylindric, rarely linear-oblanceolate. Pedicel 5–10 mm. Calyx irregularly 2–4-lobed, lobes sparsely ciliate. Corolla lobes oblong ovate, not ciliate. Stamens filaments sparsely villous above base. Fruiting calyx slightly inflated. Berry purple-black, globose, sometimes emarginate. Seeds brown
In China: Gansu, Nei Mongol, Ningxia, Qinghai, N Shaanxi, Xinjiang, Xizang. Afghanistan, Kazakhstan, Kyrgyzstan, Mongolia, Pakistan, Russia, Tajikistan, Turkmenistan, Uzbekistan, SW Asia, Europe

1.4 Chemical Diversity in Leaf and Fruits of Wolfberry

Polysaccharides represent quantitatively the most important group of substances in the fruit of L. barbarum. which are estimated to comprise 3–8 % of the dried fruits (Amagase and Farnswoeth 2011). More than 30 polysaccarides have been isolated from the fruit of L. barbarum, L. chinense, and L. ruthenium (Table 1.2). The molecular weight of polysaccharides varies greatly in different species, which might lead to the different pharmacological function.
Table 1.2
Polysaccharides in fruits of L. chinense, L. barbarum, L. ruthenicum
Glycoconjugate
MW
Carbohydrate content
Monosaccharides (molar ratio or %)
Reference
L. barbarum
LbGp1
88,000
 
Ara, Gla, Glc (2.5:1.0:1.0)
(Yao et al. 2011)
LbGp2
68,200
90.7
Ara, Gal (4:5)
(Peng and Tian 2001)
LbGp3
92,500
93.6
Ara, Gal (1:1)
(Huang et al. 1998, 1999)
LbGp4
214,800
85.6
Ara, Gal, Rha, Glc (1.5:2.5:0.43:0.23)
(Huang et al. 1998; Peng et al. 2001a)
LbGp5
23,700
8.6
Rha, Ara, Xyl, Gal, Man, Glc (0.33:0.52:0.42:0.94:0.85:1)
(Huang et al. 1998)
LbGp5B
23,700
 
Rha, Ara, Glc, Gal, (0.1:1:1.2:0.3), Galu (0.9)
(Peng et al. 2001b)
LBP3p
157,000
92.4
Gal, Glc, Rha, Ara, Man, Xyl (1:2.12:1.25:1.10:1.95:1.76)
(Gan et al. 2004)
LBPC2
12,000
92.8
Xyl, Rha, Man (8.8:2.3:1)
(Zhao et al. 1996, 1997)
LBPC4
10,000
95
Glc
(Zhao et al. 1996, 1997)
LBPA1
18,000
 
Heteroglycan
(Zhao et al. 1997)
LBPA3
66,000
 
Ara, Gal (1.2:1)
(Zhao et al. 1997)
LBP1a-1
11,500
 
Glc
(Duan et al. 2001)
LBP1a-2
9400
 
Glc
(Duan et al. 2001)
LBP3a-1
10,300
 
GalA
(Duan et al. 2001)
LBP3a-2
8200
 
GalA
(Duan et al. 2001)
LBPF1
150,000
48.2
 
(Chen et al. 2008)
LBPF2
150,000
30.5
 
(Chen et al. 2008)
LBPF3
150,000
34.5
 
(Chen et al. 2008)
LBPF4
150,000
20.3
 
(Chen et al. 2008)
LBPF5
150,000
23.5
 
(Chen et al. 2008)
LBPB1
18,000
 
Ara, Glc (1:3.1)
(Zhao et al. 1996, 1997)
PLBP
121,000
   
(Liang et al. 2011)
LBP-IV
418,000
 
Rha, Ara, xyl, glc, Gal (1.61:3.82:03.44:7.54:1.00)
(Liu et al. 2012)
L. chinense
Cp-1-A
10,000
87.8
Ara, Xyl (1:1)
(Qin et al. 2000)
Cp-1-B
11,000
89.4
Ara
(Qin et al. 2000)
Cp-1-C
42,000
92.4
Ara, Gal (3:1)
(Qin et al. 2000)
Cp-1-D
23,000
90.7
Ara, Gal (1:1)
(Qin et al. 2000)
Cp-2-A
89,000
88.3
Ara (50.6), Gal (22.8), Man (8.4), Rha (5.9), Glc (5.6)
(Qin et al. 2001)
Cp-2-B
89,000
88.3
Ara (45.5), Gal (47.4)
(Qin et al. 2001)
Hp-2-A
8000
87.9
Ara (70.6), Gal (13.5)
(Qin et al. 2001)
Hp-2-B
11,000
89.9
Ara (84.2), Gal (10.7)
(Qin et al. 2001)
Hp-2-C
120,000
90.7
Ara (49.5), Gal (40.8), Fuc (5.9)
(Qin et al. 2001)
Hp-0-A
23,000
 
Ara
(Potterat 2010)
L. ruthenicum
LRGP1
56,200
 
Rha, Ara, xyl, Man, glc, Gal (0.65:10.71:0.33:0.67:1:10.41)
(Peng et al. 2012a)
LRP4-A
105,000
 
Rha, Ara, glc, Gal (1:7.6:0.5:8.6)
(Lv et al. 2013)
LRGP3
75,600
 
Rha, Ara, Gal (1.0:14.9:10.4)
(Peng et al. 2012b)
As to the color regents in wolfberry, the reddish-orange color of L. barbarum and L. chinense is derived from carotenoids and their esters, which are the second major group of metabolites. Twelve carotenoids and their esters were identified in the genus Lycium (Table 1.2.). The highest content of carotenoids in ripen red berry is zeaxanthin dipalmitate which counts for 75 % of total carotenoids (508.90 μg g− 1 fresh weight (FW) in ripen fresh fruit) (Liu et al. 2014). Although there is very low level of total carotenoid (34.46 μg g− 1 FW), with 18.01μg g− 1 FW of β-carotene, in green fruits of L. ruthenicum, the content of total carotenoid in ripen black berry is undetectable (Liu et al. 2014). The zeaxanthin and β-Cryptoxanthin are undetectable both in green and ripen fruits of L. ruthenicum (Liu et al. 2014). As to the black color in ripen fruits of L. ruthenicum, ten anthocyanins were identified using HPLC-DAD-MS/MS (Zheng et al. 2011), with the highest content of pentunidin-3-O-rutinoside (trans-p-coumaroyl)-5-O-glucoside which counts 95 % of total flavonoids (Zeng et al. 2014). Consistent with this, anthocyanin content in L. ruthenicum increased steadily and reached maximum levels (10.37 OD534/g) at the ripening stage, while anthocyanin was undetectable at all stages in L. barbarum fruits (Zeng et al. 2014).
Other phytochemicals include flavonoids, alkaloids, amides, peptides, anthraquinones, coumarins, lignanoids, terpenoids, steroids, and their derivatives, organic acids, and glycolipids are summarized in Table 1.3. Kim et al. (1997c) identified 45 volatile flavor components in L. chinense leaves including four acids, 15 alcohols, seven aldehydes, two esters, three furans, nine hydrocarbons, and three others. Sannai et al. (1983) identified 36 neutral volatile compounds in L. chinense fruits. Fifty-four volatile components including twelve alcohols, twelve esters, seven aldehydes, six acids, five hydrocarbons, eight ketones, one furan, and three pyrazines were detected in the fruit of L. chinense (Yao et al. 2011). Twenty-one compounds from the essential oil of L. barbarum fruits and 18 compounds from the essential oil of L. ruthenicum fruits were identified by GC/MS (Altintas et al. 2006). 1β-Amino-3β, 4β, 5α-trihydroxycycloheptane, digupigan A, and a tryptophane glycoside, were only isolated from the root barks of L. chinense (Asano et al. 1997; Yahara et al. 1989; Wei and Liang 2003). The only one lignin, (+)-Lyoniresinol 3αOβd-glucopyranoside was isolated from the root bark of L. chinense (Han et al. 2002; Lee et al. 2005). Two compounds were newly identified from the acetone extract of dry Goji berry, 3-(3-hydroxy-4-methoxyphenyl)-N-[2-(4-methoxyphenyl)ethyl]-(2E)-Propenamide, and 3-(4-hydroxy-3-methoxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]-2-Propenamide (Personal communication with Dr. Minghua Qiu).
Table 1.3
Chemical constituents of L. barbarum, L. chinense, and L. ruthenicum
Compound name
L. barbarum
L. chinense
L. ruthenicum
Carotenoids and their esters
β-Carotene
Fruit (Yao et al. 2011)
Fruit/leaf (Yao et al. 2011)
 
Zeaxanthin
Fruit (Yao et al. 2011)
Fruit (Yao et al. 2011)
 
β-Cryptoxanthin
Fruit (Yao et al. 2011)
Fruit (Yao et al. 2011)
 
Zeaxanthinmonopalmitate
Fruit (Yao et al. 2011)
Fruit (Yao et al. 2011)
 
Zeaxanthindipalmitate
Fruit (Yao et al. 2011)
Fruit (Kim et al. 1997b)
 
Zeaxanthinmonomyristate
Fruit (Yao et al. 2011)
   
Zeaxanthinmyristate/palmitate
Fruit (Yao et al. 2011)
   
β-Cryptoxanthinpalmitate
Fruit (Yao et al. 2011)
   
Violaxanthindipalmitate
Fruit (Yao et al. 2011)
   
Mutatoxanthindipalmitate
Fruit (Yao et al. 2011)
   
Antheraxanthindipalmitate
Fruit (Yao et al. 2011)
   
Lutein
 
Fruit/ leaf (Yao et al. 2011)
 
Flavonoids
Quercetin
Fruit/ leaf/flower (Yao et al. 2011)
Fruit/leaf (Miean and Mohamed 2001)
 
Kaempferol
Fruit/ leaf/flower (Yao et al. 2011)
   
Myricetin
Fruit (Le et al. 2007)
   
Rutin
Fruit/leaf (Yao et al. 2011)
Fruit/leaf/root (Yao et al. 2011)
 
Isorhamnetin 3-O-rutinoside
Fruit (Inbaraj et al. 2010)
   
Kaempferol-3-O-rutinoside
Fruit (Inbaraj et al. 2010)
   
Hesperidin
Fruit (Inbaraj et al. 2010)
   
Apigenin
 
Leaf/root bark (Miean and Mohamed 2001)
 
Luteolin
 
Leaf (Zou 2002)
 
Acacetin
 
Leaf (Zou 2002)
 
3, 5, 7, 3′-Tetrahydroxy-6, 4′, 5′-trimethoxyflavone
 
Leaf (Zou 2002)
 
Morin
 
Fruit (Qian et al. 2004)
 
Acatein 7-O-rhamnosyl-(1-6)-glucopyranoside
 
Leaf (Zou 2002)
 
Quercetin 3-O-sophoroside
 
Leaf (Yao et al. 2011)
 
Quercetin 7-O-glucoside 3-O-glucosyl-(1-2)-galactopyranoside
 
Leaf (Yao et al. 2011)
 
Kaempferol 3-O-sophoroside
 
Leaf (Yao et al. 2011)
 
Kaempferol 7-O-glucoside 3-O-glucosyl-(1-2)-galactoside
 
Leaf (Yao et al. 2011)
 
Linarin
 
Leaf (Zou 2002; Wei and Liang 2003)
 
Alkaloids
Atropine
Fruit/shoot/root (Harsh 1989; Adams et al. 2006)
   
Hyoscyamine
Fruit/ shoot/root (Harsh 1989)
   
N a -[(E)-Cinnamoyl]histamine
Leaf (Yao et al. 2011)
   
Betaine
Fruit/ leaf/ root bark (Yao et al. 2011)
   
Melatonin
Fruit (Yao et al. 2011)
   
Calystegine A3
 
Root bark (Asano et al. 1997)
 
Calystegine A5
 
Root bark (Asano et al. 1997)
 
Calystegine A6
 
Root bark (Asano et al. 1997)
 
Calystegine A7
 
Root bark (Asano et al. 1997)
 
Calystegine B1
 
Root bark (Asano et al. 1997)
 
Calystegine B2
 
Root bark (Asano et al. 1997)
 
Calystegine B3
 
Root bark (Asano et al. 1997)
 
Calystegine B4
 
Root bark (Asano et al. 1997)
 
Calystegine B5
 
Root bark (Asano et al. 1997)
 
Calystegine C1
 
Root bark (Asano et al. 1997)
 
Calystegine C2
 
Root bark (Asano et al. 1997)
 
Calystegine N1
 
Root bark (Asano et al. 1997)
 
N-Methylcalystegine B2
 
Root bark (Asano et al. 1997)
 
N-Methylcalystegine C1
 
Root bark (Asano et al. 1997)
 
Fagomine
 
Root bark (Asano et al. 1997)
 
6-Deoxyfagomine
 
Root bark (Asano et al. 1997)
 
4-[2-Formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl] butanoic acid
 
Fruit (Chin et al. 2003)
 
4-[2-Formyl-5-(methoxymethyl)-1H-pyrrol-1-yl] butanoic acid
 
Fruit (Chin et al. 2003)
 
4-[2-Formyl-5-(methoxymethyl)-1H-pyrrol-1-yl] butanoate
 
Fruit (Chin et al. 2003)
 
Alkaloid I
 
Root bark (Yao et al. 2011)
 
Alkaloid I
 
Root bark (Yao et al. 2011)
 
Kukoamine A
 
Root bark (Funayama et al. 1980)
 
Kukoamine B
 
Root bark (Yao et al. 2011)
 
Betaine
 
Fruit/ leaf/root bark/ root (Yao et al. 2011)
 
Betaine hydrochloride
 
Root bark (Zhou et al. 1996)
 
Choline
 
Root/ root bark (Yao et al. 2011)
 
9-Formylharman
 
Fruit (Han et al. 1985)
 
1-(Methoxycarbonyl)-β-carboline
 
Fruit (Han et al. 1985)
 
Perlolyrine
 
Fruit (Han et al. 1985)
 
Amides
Lyciumide A
Fruit (Yao et al. 2011)
   
3-(3-Hydroxy-4-methoxyphenyl)-N-[2-(4- methoxyphenyl) ethyl]-(2E)-Propenamide
Fruit (Personal communication with Dr. Minghua Qiu)
   
3-(4-Hydroxy-3-methoxyphenyl)-N-[2-(4- hydroxyphenyl) ethyl]-2-Propenamide
Fruit (Personal communication with Dr. Minghua Qiu)
   
N-(α,β-Dihydrocaffeoyl)tyramine
 
Root bark (Han et al. 2002; Lee et al. 2004)
 
N-[(E)-Caffeoyl]tyramine
 
Root bark (Han et al. 2002; Lee et al. 2004)
 
N-[(Z)-Caffeoyl]tyramine
 
Root bark (Han et al. 2002; Lee et al. 2004)
 
N-[(E)-Feruloyl]octopamine
 
Root bark (Lee et al. 2004)
 
(2S, 3R, 4E, 8Z)-1-O-(βd -Glucopyranosyl)-2-(palmitoylamino)octadecasphinga-4,8-diene
 
Fruit(Kim et al. 1997a, 2000)
 
(2S, 3R, 4E, 8Z)-1-O-(βd -Glucopyranosyl)-2-[(2-hydroxypalmitoyl)amino]sphinga-4,8-diene
 
Fruit/suspension culture stem (Kim et al. 1997a; Jang et al. 1998)
 
Peptides
Lyciumamide
 
Stem/root bark (Noguchi et al. 1984)
 
Lyciumins A
 
Root bark (Yahara et al. 1989)
 
Lyciumins B
 
Root bark (Yahara et al. 1989)
 
Lyciumins C
 
Root bark (Yahara et al. 1993)
 
Lyciumins D
 
Root bark (Yahara et al. 1993)
 
Anthraquinones
Emodin
 
Root bark (Wei and Liang 2002)
 
Physcion
 
Root bark (Wei and Liang 2002)
 
1, 3, 6-Trihydroxy-2-methyl-9, 10-anthraqui-none
 
Root bark (Yao et al. 2011)
 
1, 3, 6-Trihydroxy-2-methyl-9, 10-anthraquinone 3-O-(rhamnopyranosyl)-(1-2)-6′-acetylglucopyranoside
 
Root bark (Yao et al. 2011)
 
Coumarins
Scopoletin
Fruit/leaf (Yao et al. 2011)
   
Scopoletin
 
Leaf/root bark (Zhou et al. 1996; Wei and Liang 2002; Hansel and Huang 1977)
 
Scopolin
 
Root bark (Wei and Liang 2002)

Only gold members can continue reading. Log In or Register to continue

Stay updated, free articles. Join our Telegram channel

Jun 28, 2017 | Posted by in PHARMACY | Comments Off on Chemical and Genetic Diversity of Wolfberry

Full access? Get Clinical Tree

Get Clinical Tree app for offline access