5 The gross room/surgical cut-up
Safety first and last
The histopathology department is rich in hazards (e.g. biological, chemical, radiation). These are also risks reflecting the range of materials used to store, process and analyze tissues. These may be toxic, flammable, allergic, carcinogenic, electrical, etc. Furthermore, the presence of sharp cutting implements, complex machinery and the movement of the specimens around the laboratory needs staff to be fully trained and aware of all these potential hazards. Every laboratory should have accessible and clear standard operating procedures (SOPs, see Chapter 1), of which many will reflect national/international guidelines (websites 1–3). Ongoing safety education is required and caution should be employed at every step of specimen handling for safe laboratory practice (websites 2 and 4).
Surgical cut-up/specimen dissection/grossing
The ideal layout of this room is a matter of debate, varying between different laboratories and pathologists’ needs. There are multiple different design solutions existing around the general principles of a histology laboratory (Rosai 2004, Cook 2006, websites 2, 4), but it is imperative that the dissection area must have good lighting, good ventilation, non-absorbent wipe-clean surfaces, appropriate protective clothing for the laboratory personnel, gloves and other equipment (photography, tissue macerators, disposal bins). The dissection room should be a comfortable environment permitting undisturbed work by the pathologist and support technical staff. Given that the range of specimens received in most laboratories is wide, the technical staff will have to be familiar with the various requirements of different specimens that guide their subsequent handling and pathological preparation.
It is a matter of preference whether the operators within this environment sit or stand, and ideally both options should be available. Modern dissection areas often have integrated dissection desks, enclosed fluid/fixative feeds and laminar down-draft ventilation (website 5) in order to protect both the dissector and support staff from formalin vapor. All tools and materials should be ergonomically accessible. The room should have good natural and/or electric lighting (Fig. 5.1).
Thinking before dissection
The individual choice of dissecting tools will reflect the type of specimen being considered (Fig. 5.2). However, a range of cutting blades is advised, enabling the dissector to deal with small specimens through to complex and large resections. Very large knives are particularly useful for obtaining full transverse sections of organs (lungs, liver, etc.). The smaller blades are useful for precise trimming of tissues. However, before any knife is put to the specimen, it is emphasized that the tissue specimen should be well fixed. Forceps and absorbent cloths should be available. The blocks taken (vi) should not completely fill the cassette (Fig. 5.3) as this would impede processing fluid access to the tissue. Thus, tissue cassettes are generally made of plastic and conform to a variety of size standards across the developed world nowadays. Most standard blocks allow a sample of about 20 × 20 × 3 mm thick tissue to be contained and processed. There is variation in cassette size that does allow larger blocks to be selected (Fig. 5.2). This is particularly useful for histological examination of large surgical resections where the global geography of the specimen is needed for analysis. Examples could include rectal cancer resection, radical prostatectomy and autopsy lung tissue for industrial disease. However, some general rules can be developed to specimen handling/sampling.