References
Angel J, Tang B, Feng N, Greenberg HB, Bass D. Studies of the role for NSP4 in the pathogenesis of homologous murine rotavirus diarrhea. J. Infect. Dis. 1998;177(2):455–458.
Araujo IT, Heinemann MB, Mascarenhas JD, Assis RM, Fialho AM, Leite JP. Molecular analysis of the NSP4 and VP6 genes of rotavirus strains recovered from hospitalized children in Rio de Janeiro, Brazil. J. Med. Microbi. 2007;56(Pt 6):854–859.
Arias CF, Lopez S, Espejo RT. Gene protein products of SA11 simian rotavirus genome. J. Virol. 1982;41(1):42–50.
Arnoldi F, De Lorenzo G, Mano M, Schraner EM, Wild P, Eichwald C, et al. Rotavirus increases levels of lipidated LC3 supporting accumulation of infectious progeny virus without inducing autophagosome formation. PloS One. 2014;9(4):e95197.
Au KS, Chan WK, Burns JW, Estes MK. Receptor activity of rotavirus nonstructural glycoprotein NS28. J. Virol. 1989;63(11):4553–4562.
Ball JM, Tian P, Zeng CQ, Morris AP, Estes MK. Age-dependent diarrhea induced by a rotaviral nonstructural glycoprotein. Science. 1996;272(5258):101–104.
Ball JM, Mitchell DM, Gibbons TF, Parr RD. Rotavirus NSP4: a multifunctional viral enterotoxin. Viral Immunol. 2005;18(1):27–40.
Ball JM, Schroeder ME, Williams CV, Schroeder F, Parr RD. Mutational analysis of the rotavirus NSP4 enterotoxic domain that binds to caveolin-1. Virol. J. 2013;10:336.
Beau I, Cotte-Laffitte J, Geniteau-Legendre M, Estes MK, Servin AL. An NSP4-dependant mechanism by which rotavirus impairs lactase enzymatic activity in brush border of human enterocyte-like Caco-2 cells. Cell. Microbiol. 2007;9(9):2254–2266.
Benati FJ, Maranhao AG, Lima RS, da Silva RC, Santos N. Multiple-gene characterization of rotavirus strains: evidence of genetic linkage among the VP7-, VP4-, VP6-, and NSP4-encoding genes. J. Med. Virol. 2010;82(10):1797–1802.
Bergmann CC, Maass D, Poruchynsky MS, Atkinson PH, Bellamy AR. Topology of the non-structural rotavirus receptor glycoprotein NS28 in the rough endoplasmic reticulum. EMBO J. 1989;8(6):1695–1703.
Berkova Z, Crawford SE, Trugnan G, Yoshimori T, Morris AP, Estes MK. Rotavirus NSP4 induces a novel vesicular compartment regulated by calcium and associated with viroplasms. J. Virol. 2006;80(12):6061–6071.
Berkova Z, Crawford SE, Blutt SE, Morris AP, Estes MK. Expression of rotavirus NSP4 alters the actin network organization through the actin remodeling protein cofilin. J. Virol. 2007;81(7):3545–3553.
Bhowmick R, Halder UC, Chattopadhyay S, Chanda S, Nandi S, Bagchi P, et al. Rotaviral enterotoxin nonstructural protein 4 targets mitochondria for activation of apoptosis during infection. J. Biol. Chem. 2012;287(42):35004–35020.
Bhowmick R, Halder UC, Chattopadhyay S, Nayak MK, Chawla-Sarkar M. Rotavirus- encoded nonstructural protein 1 modulates cellular apoptotic machinery by targeting tumor suppressor protein p53. J. Virol. 2013;87(12):6840–6850.
Blutt SE, Matson DO, Crawford SE, Staat MA, Azimi P, Bennett BL, et al. Rotavirus antigenemia in children is associated with viremia. PLoS Med. 2007;4(4):e121.
Borghan MA, Mori Y, El-Mahmoudy AB, Ito N, Sugiyama M, Takewaki T, et al. Induction of nitric oxide synthase by rotavirus enterotoxin NSP4: implication for rotavirus pathogenicity. J. Gen. Virol. 2007;88(Pt 7):2064–2072.
Boshuizen JA, Reimerink JH, Korteland-van Male AM, van Ham VJ, Koopmans MP, Buller HA, et al. Changes in small intestinal homeostasis, morphology, and gene expression during rotavirus infection of infant mice. J. Virol. 2003;77(24):13005–13016.
Boshuizen JA, Rossen JW, Sitaram CK, Kimenai FF, Simons-Oosterhuis Y, Laffeber C, et al. Rotavirus enterotoxin NSP4 binds to the extracellular matrix proteins laminin-beta3 and fibronectin. J. Virol. 2004;78(18):10045–10053.
Both GW, Siegman LJ, Bellamy AR, Atkinson PH. Coding assignment and nucleotide sequence of simian rotavirus SA11 gene segment 10: location of glycosylation sites suggests that the signal peptide is not cleaved. J. Virol. 1983;48(2):335–339.
Bowman GD, Nodelman IM, Levy O, Lin SL, Tian P, Zamb TJ, et al. Crystal structure of the oligomerization domain of NSP4 from rotavirus reveals a core metal-binding site. J. Mol. Biol. 2000;304(5):861–871.
Brunet JP, Cotte-Laffitte J, Linxe C, Quero AM, Geniteau-Legendre M, Servin A. Rotavirus infection induces an increase in intracellular calcium concentration in human intestinal epithelial cells: role in microvillar actin alteration. J. Virol. 2000;74(5):2323–2332.
Burns JW, Krishnaney AA, Vo PT, Rouse RV, Anderson LJ, Greenberg HB. Analyses of homologous rotavirus infection in the mouse model. Virology. 1995;207(1):143–153.
Chacko AR, Arifullah M, Sastri NP, Jeyakanthan J, Ueno G, Sekar K, et al. Novel pentameric structure of the diarrhea-inducing region of the rotavirus enterotoxigenic protein NSP4. J. Virol. 2011;85(23):12721–12732.
Chaibi C, Cotte-Laffitte J, Sandre C, Esclatine A, Servin AL, Quero AM, et al. Rotavirus induces apoptosis in fully differentiated human intestinal Caco-2 cells. Virology. 2005;332(2):480–490.
Chaimongkol N, Khamrin P, Malasao R, Thongprachum A, Ushijima H, Maneekarn N. Genotypic linkages of gene segments of rotaviruses circulating in pediatric patients with acute gastroenteritis in Thailand. Infect. Genet. Evol. 2012;12(7):1381–1391.
Chan WK, Au KS, Estes MK. Topography of the simian rotavirus nonstructural glycoprotein (NS28) in the endoplasmic reticulum membrane. Virology. 1988;164(2):435–442.
Chen F, Wang H, He H, Song L, Wu J, Gao Y, et al. Short hairpin RNA-mediated silencing of bovine rotavirus NSP4 gene prevents diarrhoea in suckling mice. J. Gen. Virol. 2011;92(Pt 4):945–951.
Ciarlet M, Estes MK. Human and most animal rotavirus strains do not require the presence of sialic acid on the cell surface for efficient infectivity. J. Gen. Virol. 1999;80(Pt 4):943–948.
Ciarlet M, Liprandi F, Conner ME, Estes MK. Species specificity and interspecies relatedness of NSP4 genetic groups by comparative NSP4 sequence analyses of animal rotaviruses. Archiv. Virol. 2000;145(2):371–383.
Collins JE, Benfield DA, Duimstra JR. Comparative virulence of two porcine group-A rotavirus isolates in gnotobiotic pigs. Ame. J. Vet. Res. 1989;50(6):827–835.
Crawford SE, Estes MK. Viroporin-mediated calcium-activated autophagy. Autophagy. 2013;9(5):797–798.
Crawford SE, Hyser JM, Utama B, Estes MK. Autophagy hijacked through viroporin-activated calcium/calmodulin-dependent kinase kinase-beta signaling is required for rotavirus replication. Proc. Natl. Acad. Sci. USA. 2012;109(50):E3405–E3413.
Criglar JM, Hu L, Crawford SE, Hyser JM, Broughman JR, Prasad BV, et al. A novel form of rotavirus NSP2 and phosphorylation-dependent NSP2-NSP5 interactions are associated with viroplasm assembly. J. Virol. 2014;88(2):786–798.
Deepa R, Durga Rao C, Suguna K. Structure of the extended diarrhea-inducing domain of rotavirus enterotoxigenic protein NSP4. Arch. Virol. 2007;152(5):847–859.
Diaz Y, Chemello ME, Pena F, Aristimuno OC, Zambrano JL, Rojas H, et al. Expression of nonstructural rotavirus protein NSP4 mimics Ca2+ homeostasis changes induced by rotavirus infection in cultured cells. J. Virol. 2008;82(22):11331–11343.
Diaz Y, Pena F, Aristimuno OC, Matteo L, De Agrela M, Chemello ME, et al. Dissecting the Ca(2)(+) entry pathways induced by rotavirus infection and NSP4-EGFP expression in Cos-7 cells. Virus Res. 2012;167(2):285–296.
Didsbury A, Wang C, Verdon D, Sewell MA, McIntosh JD, Taylor JA. Rotavirus NSP4 is secreted from infected cells as an oligomeric lipoprotein and binds to glycosaminoglycans on the surface of non-infected cells. Virol. J. 2011;8:551.
Dong Y, Zeng CQ, Ball JM, Estes MK, Morris AP. The rotavirus enterotoxin NSP4 mobilizes intracellular calcium in human intestinal cells by stimulating phospholipase C- mediated inositol 1,4,5-trisphosphate production. Proc. Natl. Acad. Sci. USA. 1997;94(8):3960–3965.
Ericson BL, Graham DY, Mason BB, Estes MK. Identification, synthesis, and modifications of simian rotavirus SA11 polypeptides in infected cells. J. Virol. 1982;42(3):825–839.
Ericson BL, Graham DY, Mason BB, Hanssen HH, Estes MK. Two types of glycoprotein precursors are produced by the simian rotavirus SA11. Virology. 1983;127(2):320–332.
Estes MK, Kapikian AZ. Rotaviruses. In: Knipe DMHP, ed. Fields Virology. fifth ed. Philadelphia: Lippincott Williams & Wilkins; 2007.
Estes MK, Morris AP. A viral enterotoxin. A new mechanism of virus-induced pathogenesis. Adv. Exp. Med. Biol. 1999;473:73–82.
Estes, M.K., Kang, G., Zeng, C.Q., Crawford, S.E., Ciarlet, M., 2001. Pathogenesis of rotavirus gastroenteritis. Novartis Foundation Symposium, 238, 82–96; discussion-100.
Farthing MJ, Casburn-Jones A, Banks MR. Enterotoxins, enteric nerves, and intestinal secretion. Curr. Gastroenterol. Rep. 2004;6(3):177–180.
Feng J, Yang J, Zheng S, Qiu Y, Chai C. Silencing of the rotavirus NSP4 protein decreases the incidence of biliary atresia in murine model. PloS One. 2011;6(8):e23655.
Finkbeiner SR, Zeng XL, Utama B, Atmar RL, Shroyer NF, Estes MK. Stem cell-derived human intestinal organoids as an infection model for rotaviruses. mBio. 2012;3(4):e00159–e00212.
Foulke-Abel J, In J, Kovbasnjuk O, Zachos NC, Ettayebi K, Blutt SE, et al. Human enteroids as an ex-vivo model of host-pathogen interactions in the gastrointestinal tract. Exp. Biol. Med. 2014;239(9):1124–1134.
Ge Y, Mansell A, Ussher JE, Brooks AE, Manning K, Wang CJ, et al. Rotavirus NSP4 triggers secretion of proinflammatory cytokines from macrophages via toll-Like receptor 2. J. Virol. 2013;87(20):11160–11167.
Ghosh S, Varghese V, Samajdar S, Bhattacharya SK, Kobayashi N, Naik TN. Evidence for independent segregation of the VP6- and NSP4- encoding genes in porcine group A rotavirus G6P[13] strains. Arch. Virol. 2007;152(2):423–429.
Gibbons TF, Storey SM, Williams CV, McIntosh A, Mitchel DM, Parr RD, et al. Rotavirus NSP4: Cell type-dependent transport kinetics to the exofacial plasma membrane and release from intact infected cells. Virol. J. 2011;8:278.
Greenberg HB, Estes MK. Rotaviruses: from pathogenesis to vaccination. Gastroenterology. 2009;136(6):1939–1951.
Hagbom M, Istrate C, Engblom D, Karlsson T, Rodriguez-Diaz J, Buesa J, et al. Rotavirus stimulates release of serotonin (5-HT) from human enterochromaffin cells and activates brain structures involved in nausea and vomiting. PLoS Pathog. 2011;7(7):e1002115.
Hagbom M, Sharma S, Lundgren O, Svensson L. Towards a human rotavirus disease model. Curr. Opin. Virol. 2012;2(4):408–418.
Hemming M, Huhti L, Rasanen S, Salminen M, Vesikari T. Rotavirus antigenemia in children is associated with more severe clinical manifestations of acute gastroenteritis. Pediatr. Infect. Dis. J. 2014;33(4):366–371.
Horie Y, Masamune O, Nakagomi O. Three major alleles of rotavirus NSP4 proteins identified by sequence analysis. J. Gen. Virol. 1997;78(Pt 9):2341–2346.
Hoshino Y, Saif LJ, Kang SY, Sereno MM, Chen WK, Kapikian AZ. Identification of group A rotavirus genes associated with virulence of a porcine rotavirus and host range restriction of a human rotavirus in the gnotobiotic piglet model. Virology. 1995;209(1):274–280.
Hou Z, Huang Y, Huan Y, Pang W, Meng M, Wang P, et al. Anti-NSP4 antibody can block rotavirus-induced diarrhea in mice. J. Pediatr. Gastroenterol. Nutr. 2008;46(4):376–385.
Hu L, Crawford SE, Hyser JM, Estes MK, Prasad BV. Rotavirus non-structural proteins: structure and function. Curr. Opin. Virol. 2012;2(4):380–388.
Hyser JM, Zeng CQ, Beharry Z, Palzkill T, Estes MK. Epitope mapping and use of epitope-specific antisera to characterize the VP5* binding site in rotavirus SA11 NSP4. Virology. 2008;373(1):211–228.
Hyser JM, Collinson-Pautz MR, Utama B, Estes MK. Rotavirus disrupts calcium homeostasis by NSP4 viroporin activity. mBio. 2010;1(5).
Hyser JM, Utama B, Crawford SE, Broughman JR, Estes MK. Activation of the endoplasmic reticulum calcium sensor STIM1 and store-operated calcium entry by rotavirus requires NSP4 viroporin activity. J. Virol. 2013;87(24):13579–13588.
Iturriza-Gomara M, Anderton E, Kang G, Gallimore C, Phillips W, Desselberger U, et al. Evidence for genetic linkage between the gene segments encoding NSP4 and VP6 proteins in common and reassortant human rotavirus strains. J. Clin. Microbiol. 2003;41(8):3566–3573.
Jourdan N, Brunet JP, Sapin C, Blais A, Cotte-Laffitte J, Forestier F, et al. Rotavirus infection reduces sucrase-isomaltase expression in human intestinal epithelial cells by perturbing protein targeting and organization of microvillar cytoskeleton. J. Virol. 1998;72(9):7228–7236.
Kavanagh OV, Ajami NJ, Cheng E, Ciarlet M, Guerrero RA, Zeng CQ, et al. Rotavirus enterotoxin NSP4 has mucosal adjuvant properties. Vaccine. 2010;28(18):3106–3111.
Khamrin P, Maneekarn N, Malasao R, Nguyen TA, Ishida S, Okitsu S, et al. Genotypic linkages of VP4, VP6, VP7, NSP4, NSP5 genes of rotaviruses circulating among children with acute gastroenteritis in Thailand. Infect. Genet. Evol. MEEGID. 2010;10(4):467–472.
Ko EA, Jin BJ, Namkung W, Ma T, Thiagarajah JR, Verkman AS. Chloride channel inhibition by a red wine extract and a synthetic small molecule prevents rotaviral secretory diarrhoea in neonatal mice. Gut. 2014;63(7):1120–1129.
Kordasti S, Sjovall H, Lundgren O, Svensson L. Serotonin and vasoactive intestinal peptide antagonists attenuate rotavirus diarrhoea. Gut. 2004;53(7):952–957.
Kovbasnjuk O, Zachos NC, In J, Foulke-Abel J, Ettayebi K, Hyser JM, et al. Human enteroids: preclinical models of non-inflammatory diarrhea. Stem Cell Res. Ther. 2013;4(Suppl. 1):S3.
Lee CN, Wang YL, Kao CL, Zao CL, Lee CY, Chen HN. NSP4 gene analysis of rotaviruses recovered from infected children with and without diarrhea. J. Clin. Microbiol. 2000;38(12):4471–4477.
Lorrot M, Vasseur M. Rotavirus NSP4 114-135 peptide has no direct, specific effect on chloride transport in rabbit brush-border membrane. Virol. J. 2006;3:94.
Lundgren O, Jodal M. The enteric nervous system and cholera toxin-induced secretion. Comp. Biochem. Physiol. Part A. 1997;118(2):319–327.
Lundgren O, Svensson L. Pathogenesis of rotavirus diarrhea. Microbes Infect. 2001;3(13):1145–1156.
Lundgren O, Peregrin AT, Persson K, Kordasti S, Uhnoo I, Svensson L. Role of the enteric nervous system in the fluid and electrolyte secretion of rotavirus diarrhea. Science. 2000;287(5452):491–495.
Maass DR, Atkinson PH. Rotavirus proteins VP7, NS28, and VP4 form oligomeric structures. J. Virol. 1990;64(6):2632–2641.
Malik YS, Kumar N, Sharma K, Ghosh S, Banyai K, Balasubramanian G, et al. Molecular analysis of non structural rotavirus group A enterotoxin gene of bovine origin from India. Infect. Genet. Evol. MEEGID. 2014;25:20–27.
Martin-Latil S, Mousson L, Autret A, Colbere-Garapin F, Blondel B. Bax is activated during rotavirus-induced apoptosis through the mitochondrial pathway. J. Virol. 2007;81(9):4457–4464.
Maruri-Avidal L, Lopez S, Arias CF. Endoplasmic reticulum chaperones are involved in the morphogenesis of rotavirus infectious particles. J. Virol. 2008;82(11):5368–5380.
Matthijnssens J, Ciarlet M, Heiman E, Arijs I, Delbeke T, McDonald SM, et al. Full genome-based classification of rotaviruses reveals a common origin between human Wa-Like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains. J. Virol. 2008;82(7):3204–3219.
Matthijnssens J, Ciarlet M, Rahman M, Attoui H, Banyai K, Estes MK, et al. Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch. Virol. 2008;153(8):1621–1629.
Matthijnssens J, Ciarlet M, McDonald SM, Attoui H, Banyai K, Brister JR, et al. Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch. Virol. 2011;156(8):1397–1413.
Mebus CA, Newman LE, Stair Jr EL. Scanning electron, light, and immunofluorescent microscopy of intestine of gnotobiotic calf infected with calf diarrheal coronavirus. Am. J. Vet. Res. 1975;36(12):1719–1725.
Meyer JC, Bergmann CC, Bellamy AR. Interaction of rotavirus cores with the nonstructural glycoprotein NS28. Virology. 1989;171(1):98–107.
Mirazimi A, Nilsson M, Svensson L. The molecular chaperone calnexin interacts with the NSP4 enterotoxin of rotavirus in vivo and in vitro. J. Virol. 1998;72(11):8705–8709.
Mirazimi A, Magnusson KE, Svensson L. A cytoplasmic region of the NSP4 enterotoxin of rotavirus is involved in retention in the endoplasmic reticulum. J. Gen. Virol. 2003;84(Pt 4):875–883.
Mohan KV, Kulkarni S, Glass RI, Zhisheng B, Atreya CD. A human vaccine strain of lamb rotavirus (Chinese) NSP4 gene: complete nucleotide sequence and phylogenetic analyses. Virus Genes. 2003;26(2):185–192.
Mori Y, Borgan MA, Ito N, Sugiyama M, Minamoto N. Sequential analysis of nonstructural protein NSP4s derived from Group A avian rotaviruses. Virus Res. 2002;89(1):145–151.
Morris AP, Estes MK. Microbes and microbial toxins: paradigms for microbial-mucosal interactions. VIII. Pathological consequences of rotavirus infection and its enterotoxin. Am. J. Physiol. Gastrointest. Liver Physiol. 2001;281(2):G303–G310.
Morris AP, Scott JK, Ball JM, Zeng CQ, O’Neal WK, Estes MK. NSP4 elicits age-dependent diarrhea and Ca(2 + )mediated I(-) influx into intestinal crypts of CF mice. Am. J. Physiol. 1999;277(2 Pt 1):G431–g444.
Obert G, Peiffer I, Servin AL. Rotavirus-induced structural and functional alterations in tight junctions of polarized intestinal Caco-2 cell monolayers. J. Virol. 2000;74(10):4645–4651.
O’Brien JA, Taylor JA, Bellamy AR. Probing the structure of rotavirus NSP4: a short sequence at the extreme C terminus mediates binding to the inner capsid particle. J. Virol. 2000;74(11):5388–5394.
Osborne MP, Haddon SJ, Spencer AJ, Collins J, Starkey WG, Wallis TS, et al. An electron microscopic investigation of time-related changes in the intestine of neonatal mice infected with murine rotavirus. J. Pediatr. Gastroenterol. Nutr. 1988;7(2):236–248.
Ousingsawat J, Mirza M, Tian Y, Roussa E, Schreiber R, Cook DI, et al. Rotavirus toxin NSP4 induces diarrhea by activation of TMEM16A and inhibition of Na+ absorption. Pflugers Archiv: Eur. J. Physiol. 2011;461(5):579–589.
Parr RD, Storey SM, Mitchell DM, McIntosh AL, Zhou M, Mir KD, et al. The rotavirus enterotoxin NSP4 directly interacts with the caveolar structural protein caveolin-1. J. Virol. 2006;80(6):2842–2854.
Perez JF, Ruiz MC, Chemello ME, Michelangeli F. Characterization of a membrane calcium pathway induced by rotavirus infection in cultured cells. J. Virol. 1999;73(3):2481–2490.
Rahman M, Matthijnssens J, Yang X, Delbeke T, Arijs I, Taniguchi K, et al. Evolutionary history and global spread of the emerging g12 human rotaviruses. J. Virol. 2007;81(5):2382–2390.
Rajasekaran D, Sastri NP, Marathahalli JR, Indi SS, Pamidimukkala K, Suguna K, et al. The flexible C terminus of the rotavirus non-structural protein NSP4 is an important determinant of its biological properties. J. Gen. Virol. 2008;89(Pt 6):1485–1496.
Rodriguez-Diaz J, Banasaz M, Istrate C, Buesa J, Lundgren O, Espinoza F, et al. Role of nitric oxide during rotavirus infection. J. Med. Virol. 2006;78(7):979–985.
Rollo EE, Kumar KP, Reich NC, Cohen J, Angel J, Greenberg HB, et al. The epithelial cell response to rotavirus infection. J. Immunol. 1999;163(8):4442–4452.
Ruiz MC, Cohen J, Michelangeli F. Role of Ca2+ in the replication and pathogenesis of rotavirus and other viral infections. Cell Calcium. 2000;28(3):137–149.
Sastri NP, Pamidimukkala K, Marathahalli JR, Kaza S, Rao CD. Conformational differences unfold a wide range of enterotoxigenic abilities exhibited by rNSP4 peptides from different rotavirus strains. Open Virol. J. 2011;5:124–135.
Sastri NP, Viskovska M, Hyser JM, Tanner MR, Horton LB, Sankaran B, et al. Structural plasticity of the coiled-coil domain of rotavirus NSP4. J. Virol. 2014;88(23):13602–13612.
Saxena K, Blutt SE, Ettayebi K, Zeng XL, Broughman JR, Crawford SE, et al. Human intestinal enteroids: a new model to study human rotavirus infection, host restriction, and pathophysiology. J. Virol. 2015;90(1):43–56.
Schroeder ME, Hostetler HA, Schroeder F, Ball JM. Elucidation of the rotavirus NSP4-caveolin-1 and -cholesterol interactions using synthetic peptides. J. Amino Acids. 2012;2012:575180.
Seo NS, Zeng CQ, Hyser JM, Utama B, Crawford SE, Kim KJ, et al. Integrins alpha1beta1 and alpha2beta1 are receptors for the rotavirus enterotoxin. Proc. Natl. Acad. Sci. USA. 2008;105(26):8811–8818.
Silvestri LS, Tortorici MA, Vasquez-Del Carpio R, Patton JT. Rotavirus glycoprotein NSP4 is a modulator of viral transcription in the infected cell. J. Virol. 2005;79(24):15165–15174.
Storey SM, Gibbons TF, Williams CV, Parr RD, Schroeder F, Ball JM. Full-length, glycosylated NSP4 is localized to plasma membrane caveolae by a novel raft isolation technique. J. Virol. 2007;81(11):5472–5483.
Sugata K, Taniguchi K, Yui A, Miyake F, Suga S, Asano Y, et al. Analysis of rotavirus antigenemia and extraintestinal manifestations in children with rotavirus gastroenteritis. Pediatrics. 2008;122(2):392–397.
Superti F, Amici C, Tinari A, Donelli G, Santoro MG. Inhibition of rotavirus replication by prostaglandin A: evidence for a block of virus maturation. J. Infect. Dis. 1998;178(2):564–568.
Tafazoli F, Zeng CQ, Estes MK, Magnusson KE, Svensson L. NSP4 enterotoxin of rotavirus induces paracellular leakage in polarized epithelial cells. J. Virol. 2001;75(3):1540–1546.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013;30(12):2725–2729.
Tavares Tde M, de Brito WM, Fiaccadori FS, Parente JA, da Costa PS, Giugliano LG, et al. Molecular characterization of VP6-encoding gene of group A human rotavirus samples from central west region of Brazil. J. Med. Virol. 2008;80(11):2034–2039.
Tian P, Hu Y, Schilling WP, Lindsay DA, Eiden J, Estes MK. The nonstructural glycoprotein of rotavirus affects intracellular calcium levels. J. Virol. 1994;68(1):251–257.
Tian P, Estes MK, Hu Y, Ball JM, Zeng CQ, Schilling WP. The rotavirus nonstructural glycoprotein NSP4 mobilizes Ca2+ from the endoplasmic reticulum. J. Virol. 1995;69(9):5763–5772.
Tsugawa T, Tatsumi M, Tsutsumi H. Virulence-associated genome mutations of murine rotavirus identified by alternating serial passages in mice and cell cultures. J. Virol. 2014;88(10):5543–5558.
Uittenbogaard A, Smart EJ. Palmitoylation of caveolin-1 is required for cholesterol binding, chaperone complex formation, and rapid transport of cholesterol to caveolae. J. Biol. Chem. 2000;275(33):25595–25599.
Vende P, Gratia M, Duarte MD, Charpilienne A, Saguy M, Poncet D. Identification of mutations in the genome of rotavirus SA11 temperature-sensitive mutants D, H, I and J by whole genome sequences analysis and assignment of tsI to gene 7 encoding NSP3. Virus Res. 2013;176(1–2):144–154.
Ward LA, Rosen BI, Yuan L, Saif LJ. Pathogenesis of an attenuated and a virulent strain of group A human rotavirus in neonatal gnotobiotic pigs. J. Gen. Virol. 1996;77(Pt 7):1431–1441.
Xu A, Bellamy AR, Taylor JA. Immobilization of the early secretory pathway by a virus glycoprotein that binds to microtubules. EMBO J. 2000;19(23):6465–6474.
Zachos, N.C., Kovbasnjuk, O., Foulke-Abel, J., 2015. In: J, Blutt SE, deJonge HR, et al., 2015. Human enteroids/colonoids and intestinal organoids functionally recapitulate normal intestinal physiology and pathophysiology. J. Biol. Chem.
Zambrano JL, Diaz Y, Pena F, Vizzi E, Ruiz MC, Michelangeli F, et al. Silencing of rotavirus NSP4 or VP7 expression reduces alterations in Ca2+ homeostasis induced by infection of cultured cells. J. Virol. 2008;82(12):5815–5824.
Zambrano JL, Sorondo O, Alcala A, Vizzi E, Diaz Y, Ruiz MC, et al. Rotavirus infection of cells in culture induces activation of RhoA and changes in the actin and tubulin cytoskeleton. PloS One. 2012;7(10):e47612.
Zhang M, Zeng CQ, Dong Y, Ball JM, Saif LJ, Morris AP, et al. Mutations in rotavirus nonstructural glycoprotein NSP4 are associated with altered virus virulence. J. Virol. 1998;72(5):3666–3672.
Zhang M, Zeng CQ, Morris AP, Estes MK. A functional NSP4 enterotoxin peptide secreted from rotavirus-infected cells. J. Virol. 2000;74(24):11663–11670.
Zheng S, Zhang H, Zhang X, Peng F, Chen X, Yang J, et al. CD8+ T lymphocyte response against extrahepatic biliary epithelium is activated by epitopes within NSP4 in experimental biliary atresia. Am. J. Physiol. Gastrointest. Liver Physiol. 2014;307(2):G233–G240.