Chapter 3 Hydrogen ion homoeostasis and blood gases
Introduction
Buffering of hydrogen ions
As hydrogen ions are generated they are buffered, thus limiting the rise in hydrogen ion concentration that would otherwise occur. A buffer system consists of a weak acid, that is, one that is incompletely dissociated, and its conjugate base. If hydrogen ions are added to a buffer, some will combine with the conjugate base and convert it to the undissociated acid. Thus, the addition of hydrogen ions to the bicarbonate–carbonic acid system (Equation 3.2) drives the reaction to the right, increasing the amount of carbonic acid and consuming bicarbonate ions:
The efficacy of any buffer is limited by its concentration and by the position of the equilibrium. A buffer operates most efficiently at hydrogen ion concentrations that result in approximately equal concentrations of undissociated acid and conjugate base. The bicarbonate buffer system is the most important in the ECF, yet at normal ECF hydrogen ion concentrations, the concentration of carbonic acid is about 1.2 mmol/L, while that of bicarbonate is 20 times greater. However, the capacity of the bicarbonate system is greatly enhanced in the body because carbonic acid can readily be formed from carbon dioxide or disposed of by conversion into carbon dioxide and water (see Equation 3.1).
For every hydrogen ion buffered by bicarbonate, a bicarbonate ion is consumed (see Equation 3.2). To maintain the capacity of the buffer system, the bicarbonate must be regenerated. Yet, when bicarbonate is formed from carbonic acid (indirectly from carbon dioxide and water), equimolar amounts of hydrogen ions are formed simultaneously (see Equation 3.2). Bicarbonate formation can only continue if these hydrogen ions are removed. This process occurs in the cells of the renal tubules, where hydrogen ions are secreted into the urine, and where bicarbonate is generated and retained in the body.
Proteins, including intracellular proteins, are also involved in buffering. The proteinaceous matrix of bone is an important buffer in chronic acidosis. Phosphate is a minor buffer in the ECF but is of fundamental importance in the urine. The special role of haemoglobin is considered on p. 43.
Bicarbonate reabsorption and hydrogen ion excretion
The luminal surface of renal tubular cells is impermeable to bicarbonate and, therefore, direct reabsorption cannot occur. Within the renal tubular cells, carbonic acid is formed from carbon dioxide and water (Fig. 3.1). This otherwise rather slow reaction (see Equation 3.1) is catalysed in the kidneys by the enzyme carbonate dehydratase (carbonic anhydrase). The carbonic acid thus formed dissociates into hydrogen and bicarbonate ions. The bicarbonate ions pass across the basolateral borders of the cells into the interstitial fluid. The hydrogen ions are secreted across the luminal membrane in exchange for sodium ions, which accompany bicarbonate into the interstitial fluid (see Fig. 3.1). The formation of bicarbonate and hydrogen ions is promoted by their continuous removal and by the presence of carbonate dehydratase.
Ammonia, produced by the deamination of glutamine in renal tubular cells, is also an important urinary buffer. The enzyme that catalyses this reaction, glutaminase, is induced in states of chronic acidosis, allowing increased ammonia production and hence increased hydrogen ion excretion via ammonium ions. Ammonia can readily diffuse across cell membranes, but ammonium ions, formed when ammonia buffers hydrogen ions (Equation 3.4), cannot. Passive reabsorption of ammonium ions is therefore prevented.
At normal intracellular hydrogen ion concentrations, most ammonia is present as ammonium ions. Diffusion of ammonia out of the cell disturbs the equilibrium, causing more ammonia to be formed. The simultaneous production of hydrogen ions would seem to negate the process. However, these ions are used up in gluconeogenesis, when they combine with glutamate formed by the deamination of glutamine. There may also be some shift of hepatic urea synthesis (a process that generates hydrogen ions) to glutamine synthesis (which consumes them). Urinary hydrogen ion excretion is summarized in Figure 3.2. Acidification of the urine takes place primarily in the distal parts of the distal convoluted tubules and in the collecting ducts, where an ATP-dependent H+-pump in the α-intercalated cells secretes hydrogen ions in exchange for potassium ions. In addition, sodium reabsorption by the principal cells creates an electrochemical gradient that engenders the secretion of potassium and hydrogen ions. Aldosterone facilitates hydrogen ion secretion directly by stimulating the H+-pump and indirectly through enhancing sodium reabsorption.
Transport of carbon dioxide
In red blood cells, metabolism is anaerobic and little carbon dioxide is produced. Carbon dioxide thus diffuses into red cells down a concentration gradient and carbonic acid is formed, facilitated by carbonate dehydratase (Fig. 3.3). Haemoglobin buffers the hydrogen ions formed when the carbonic acid dissociates. Haemoglobin is a more powerful buffer when in the deoxygenated state and the proportion in this state increases during the passage of blood through capillary beds, as oxygen is lost to the tissues.
Clinical and Laboratory Assessment of Hydrogen Ion Status
As will be seen, many conditions are associated with abnormalities of blood hydrogen ion concentration and partial pressure of carbon dioxide (Pco2). The clinical features associated with both these abnormalities and with an altered partial pressure of oxygen (Po2) are shown in Figure 3.4.
It is vital that air is excluded from the syringe, both before and after drawing blood, and that, if possible, analysis is performed immediately. (In practice, the analysers are usually situated close to the patient, e.g. in intensive therapy units, rather than in a remote laboratory (see p. 5).) If the blood sample has to be transported, the syringe, capped with a blind hub and enclosed in a plastic bag, should be chilled in ice water. The analysers measure [H+] (strictly, activity), Pco2 and Po2 using specific electrodes; these measurements are together known colloquially as ‘blood gases’; they frequently measure other analytes in addition, for example, lactate, haemoglobin, sodium and potassium.
By the law of mass action, it follows from the equations describing the dissociation of carbonic acid (Equations 3.1 and 3.2) that [H+] is directly proportional to Pco2 and inversely proportional to bicarbonate concentration; that is, it is determined by the ratio of Pco2 to bicarbonate:
The constant, K, embraces the dissociation constants for Equations 3.1 and 3.2 and the solubility coefficient of carbon dioxide, which governs the concentration of the gas in solution at a given partial pressure. When [H+] is measured in nmol/L, bicarbonate in mmol/L and Pco2 in kilopascals (kPa), the value of K is approximately 180 at 37°C; if Pco2 is measured in mm Hg, the value of K is 24.
An appreciation of the relationship between [H+], bicarbonate concentration and Pco2 is of fundamental importance to an understanding of the pathophysiology of hydrogen ion homoeostasis. It will be apparent from Equation 3.5 that the relationships between [H+] and Pco2 and between bicarbonate concentration and Pco2 are linear. These relationships have been quantified by measurements made in vivo, and it is therefore possible to predict the effect of a change in one variable on another, for example the effect of an acute rise in Pco2 on [H+]. This information is an important aid in the interpretation of acid–base data.
The relationships between [H+], Pco2 and bicarbonate concentration are plotted in Figure 3.5. This diagram may be useful as an aide-mémoire to the interpretation of acid–base data but should not be used as a substitute for a full understanding of the underlying principles.
Disorders of Hydrogen Ion Homoeostasis
Non-respiratory (metabolic) acidosis
The primary abnormality in non-respiratory acidosis is either increased production or decreased excretion of hydrogen ions other than from carbon dioxide. In some cases, both may contribute. Loss of bicarbonate from the body can also, indirectly, cause an acidosis. Causes of non-respiratory acidosis are given in Figure 3.6. Excess hydrogen ions are buffered by bicarbonate (Equation 3.2) and other buffers. The carbonic acid thus formed dissociates (Equation 3.1) and the carbon dioxide is lost in the expired air. This buffering limits the potential rise in hydrogen ion concentration, but at the expense of a reduction in bicarbonate concentration, which is a constant feature of non-respiratory acidosis.
Figure 3.6 Principal causes of non-respiratory (metabolic) acidosis. aAcidosis with normal anion gap.
Compensation is effected by hyperventilation, which increases the removal of carbon dioxide and lowers the Pco2. The Pco2/[HCO3−] ratio falls, thus tending to reduce the [H+] (Equation 3.5). Hyperventilation is a direct result of the increased [H+] stimulating the respiratory centre. Respiratory compensation cannot completely normalize the [H+], as it is the high concentration itself that stimulates the compensatory hyperventilation. Furthermore, the increased work of the respiratory muscles produces carbon dioxide, thereby limiting the extent to which the Pco2 can be lowered.
The complete correction of a non-respiratory acidosis requires reversal of the underlying cause, for example rehydration and insulin for diabetic ketoacidosis (see Case history 11.2) and removal of salicylate in salicylate overdose. It is important to maintain adequate renal perfusion to maximize renal hydrogen ion excretion. The use of exogenous bicarbonate to buffer hydrogen ions is discussed below and on p. 193.
Decreased excretion of hydrogen ions
Acidosis occurs in renal glomerular failure (see Case history 4.2), when the decreased glomerular filtration causes a reduction in the amount of sodium that is filtered and, therefore, available for exchange with hydrogen ions. The amount of phosphate filtered and available for buffering also decreases. Renal tubular acidoses are discussed in Chapter 4.
Loss of bicarbonate
Loss of bicarbonate and retention of hydrogen ions can result in acidosis in patients losing alkaline secretions from the small intestine (e.g. through fistulae). In the stomach, bicarbonate generated from carbon dioxide and water diffuses into the blood and hydrogen ions are secreted into the lumen (Fig. 3.8). In the pancreas and small intestine, the movements of bicarbonate and hydrogen ions occur in the opposite directions (see Fig. 3.8); thus hydrogen ions that are secreted into the stomach lumen are neutralized by bicarbonate in the small intestine.