Due to presence of secondary bioactive metabolites, natural compounds are considered a major source of new active molecules that can be developed as new drugs. Infectious diseases, and mainly the common respiratory infections, are major challenges to the current chemotherapy systems and, therefore, there is a requirement to find new compounds with therapeutic potential. The volatile natural compounds and essential oils are the main treasure agents in the natural compounds with antibiotic potential. The present chapter reviews natural traditional remedies used in the treatment of respiratory infections with the emphasis on antibacterial, antiviral, and antiinflammation activities of the volatile natural compounds (essential oils, etc.), and provides a brief view in some of structural activity relationships between antibacterial potencies and chemical structures of the essential oil’s constituents.
Volatile oils: Potential agents for the treatment of respiratory infections
* Guilan University of Medical Sciences, Department of Pharmacognosy, School of Pharmacy, Research and Development Center of Plants and Medicinal Chemistry, Rasht, Iran
** Shiraz University of Medical Sciences, Medicinal Plants Processing Research Center, Shiraz, Iran
† Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
‡ Regulations (GCP/ICH), Pharmaceuticals, Denmark
Abstract
Keywords
1. Introduction
Table 16.1
Some of the Common Pathogens Involved in Respiratory Tract Infections
Pathogen Name | Common Infected Form | Category | References |
Streptococcus pneumoniae | Pneumonia/invasive pneumococcal diseases | Gram-positive | a |
Haemophilus influenzae | Pneumonia, epiglottitis and sinusitis | Gram-negative | b |
Chlamydophila pneumoniae | Atypical pneumonia | Obligate intracellular bacterium | c |
Staphylococcus aureus | Sinusitis, pneumonia | Gram-positive | d |
Pseudomonas aeruginosa | Sinusitis, pneumonia | Gram-negative | e |
Legionella pneumophila | Cough with sputum or bloody sputum/pneumonia, bronchiolitis | Gram-negative | f |
Moraxella catarrhalis | Bronchitis, sinusitis, laryngitis and bronchopneumonia | Gram-negative | g |
Rhinoviruses | Common cold, sinusitis, pneumonia (in middle-aged adults) | Enterovirus | h |
Coronaviruses | Pneumonia | Coronavirinae | i |
Influenza virus | Pneumonia | Orthomyxovirus | j |
Respiratory syncytial virus | Bronchiolitis, pneumonia | Pneumovirus | k |
Adenovirus | Pneumonia, tonsillitis, bronchiolitis | Adenoviridae | l |
Herpes simplex virus | Pneumonia, pharyngitis | Respirovirus | m |
Histoplasma capsulatum | Pneumonia | Histoplasma (dimorphic fungi) | n |
Cryptococcus neoformans | Pneumonia | Cryptococcus (yeast) | o |
Coccidioides immitis | Pneumonia | Coccidioides (pathogenic fungus) | p |
Pneumocystis jirovecii | Pneumonia | Pneumocystis (yeast-like fungus) | q |
a Madhi SA, Klugman KP, Group TVT. A role for Streptococcus pneumoniae in virus-associated pneumonia. Nat Med 2004; 10:811–3. Tan TQ, Mason EO, Wald ER, Barson WJ, Schutze GE, Bradley JS, et al. Clinical characteristics of children with complicated pneumonia caused by Streptococcus pneumoniae. Pediatrics 2002; 110: 1–6. Lynch JP, Martínez FJ. Clinical relevance of macrolide-resistant Streptococcus pneumoniae for community-acquired pneumonia. Clin Infect Dis 2002; 34: S27–S46.
b Ginsburg CM, Howard JB, Nelson JD. Report of 65 cases of Haemophilus influenzae b pneumonia. Pediatrics 1979; 64: 283–6. Peltola H. Worldwide Haemophilus influenzae type b disease at the beginning of the 21st century: global analysis of the disease burden 25 years after the use of the polysaccharide vaccine and a decade after the advent of conjugates. Clin Microbiol Rev 2000; 13: 302–17. Cordero E, Pachón J, Rivero A, Girón JA, Gómez-Mateos J, Merino MD, et al. Haemophilus influenzae pneumonia in human immunodeficiency virus-infected patients. Clin Infect Dis 2000; 30: 461–5. Farley MM, Stephens DS, Brachman PS, Harvey RC, Smith JD, Wenger JD. Invasive Haemophilus influenzae disease in adults: a prospective, population-based surveillance. Ann Intern Med 1992; 116: 806–12.
c Wang X, Li H, Xia Z. Chlamydia pneumoniae Pneumonia. Radiology of Infectious Diseases 2015; 2 : 69–74. Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007; 44: S27–S72. Mansel J, Rosenow E, Smith T, Martin J. Mycoplasma pneumoniae pneumonia. CHEST J 1989; 95: 639–46. Michelow IC, Olsen K, Lozano J, Rollins NK, Duffy LB, Ziegler T, et al. Epidemiology and clinical characteristics of community-acquired pneumonia in hospitalized children. Pediatrics 2004; 113: 701–7.
d Rubinstein E, Kollef MH, Nathwani D. Pneumonia caused by methicillin-resistant Staphylococcus aureus. Clin Infect Dis 2008; 46: S378–S85. Rello J, Sole-Violan J, Sa-Borges M, Garnacho-Montero J, Muñoz E, Sirgo G, et al. Pneumonia caused by oxacillin-resistant Staphylococcus aureus treated with glycopeptides*. Crit Care Med 2005; 33: 1983–7. Jiang R-S, Jang J-W, Hsu C-Y. Post-functional endoscopic sinus surgery methicillin-resistant Staphylococcus aureus sinusitis. Am J Rhinol 1999; 13: 273–7. Solares CA, Batra PS, Hall GS, Citardi MJ. Treatment of chronic rhinosinusitis exacerbations due to methicillin-resistant Staphylococcus aureus with mupirocin irrigations. Am J Otolaryngol 2006; 27: 161–5. Brown CA, Paisner HM, Biel MA, Levinson RM, Sigel ME, Garvis GE, et al. Evaluation of the microbiology of chronic maxillary sinusitis. Ann Otol Rhinol Laryngol 1998; 107: 942–5.
e Ruxana TS, Timothy S B, John WC, Alice SP. Pathogen–Host Interactions in Pseudomonas aeruginosa Pneumonia. Am J Respir Crit Care Med2005; 171: 1209–23. Jordi R, Dolors M, Francesca M, Paola J, Ferran S, Jordi V, Pere C. Recurrent Pseudomonas aeruginosa Pneumonia in Ventilated Patients. Am J Respir Crit Care Med1998;157: 912–6. Zohra B, Jean B, Walid AH, Martin D. Biofilm Formation by Staphylococcus Aureus and Pseudomonas Aeruginosa is Associated with an Unfavorable Evolution after Surgery for Chronic Sinusitis and Nasal Polyposis. Otolaryngol Head Neck Surg 2006; 134: 991–6.
f Carratala J, Gudiol F, Pallares R, Dorca J, Verdaguer R, Ariza J, et al. Risk factors for nosocomial Legionella pneumophila pneumonia. Am J Respir Crit Care Med 1994; 149: 625–9. Falco V, Fernández dST, Alegre J, Ferrer A, Martínez VJ. Legionella pneumophila. A cause of severe community-acquired pneumonia. Chest 1991; 100: 1007–11. Beigel F, Jürgens M, Filik L, Bader L, Lück C, Göke B, et al. Severe Legionella pneumophila pneumonia following infliximab therapy in a patient with Crohn’s disease. Inflamm Bowel Dis 2009; 15: 1240–4. Sato P, Madtes DK, Thorning D, Albert RK. Bronchiolitis obliterans caused by Legionella pneumophila. CHEST Journal 1985; 87: 840–2.
g Klugman K. The clinical relevance of in vitro resistance to penicillin, ampicillin, amoxycillin and alternative agents, for the treatment of community-acquired pneumonia caused by Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis. J Antimicrob Chemother 1996; 38: 133–40. Karalus R, Campagnari A. Moraxella catarrhalis: a review of an important human mucosal pathogen. Microbes Infect 2000; 2: 547–59. DiPersio JR, Jones RN, Barrett T, Doern GV, Pfaller MA. Fluoroquinolone-resistant Moraxella catarrhalis in a patient with pneumonia: report from the SENTRY Antimicrobial Surveillance Program (1998). Diagn Microbiol Infect Dis 1998; 32: 131–5.
h Winther B. Rhinovirus infections in the upper airway. Proc Am Thorac Soc 2011; 8: 79–89.
i Peiris J, Lai S, Poon L, Guan Y, Yam L, Lim W, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 2003; 361: 1319–25. Peiris J, Chu C, Cheng V, Chan K, Hung I, Poon L, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 2003; 361: 1767–72. Woo PC, Lau SK, Chu C-m, Chan K-h, Tsoi H-w, Huang Y, et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol 2005; 79: 884–95. Woo PC, Lau SK, Tsoi H-w, Chan K-h, Wong BH, Che X-y, et al. Relative rates of non-pneumonic SARS coronavirus infection and SARS coronavirus pneumonia. Lancet 2004; 363: 841–5. Pene F, Merlat A, Vabret A, Rozenberg F, Buzyn A, Dreyfus F, et al. Coronavirus 229E-related pneumonia in immunocompromised patients. Clin Infect Dis 2003; 37: 929–32.
j Falsey AR, Walsh EE. Viral pneumonia in older adults. Clin Infect Dis 2006; 42: 518–24.
k Glezen WP, Taber LH, Frank AL, Kasel JA. Risk of primary infection and reinfection with respiratory syncytial virus. Am J Dis Child 1986; 140: 543–6. Willson DF, Landrigan CP, Horn SD, Smout RJ. Complications in infants hospitalized for bronchiolitis or respiratory syncytial virus pneumonia. J Pediatr 2003; 143: 142–9. Falsey AR. Respiratory Syncytial Virus Pneumonia. Community-Acquired Pneumonia: Springer; 2002: 617–28.
l Siegal FP, Dikman SH, Arayata RB, Bottone EJ. Fatal disseminated adenovirus 11 pneumonia in an agammaglobulinemic patient. Am J Med 1981; 71: 1062–7. Castro-Rodriguez JA, Daszenies C, Garcia M, Meyer R, Gonzales R. Adenovirus pneumonia in infants and factors for developing bronchiolitis obliterans: A 5-year follow-up. Pediatr Pulmonol 2006; 41: 947–53. Pichler M, Reichenbach J, Schmidt H, Herrmann G, Zielen S. Severe adenovirus bronchiolitis in children. Acta Paediatr 2000; 89: 1387–92. Murtagh P, Giubergia V, Viale D, Bauer G, Pena HG. Lower respiratory infections by adenovirus in children. Clinical features and risk factors for bronchiolitis obliterans and mortality. Pediatr Pulmonol 2009; 44: 450–6.
m Luyt C-E, Combes A, Deback C, Aubriot-Lorton M-H, Nieszkowska A, Trouillet J-L, et al. Herpes simplex virus lung infection in patients undergoing prolonged mechanical ventilation. Am J Respir Crit Care Med 2007; 175: 935–42. Ljungman P, Ellis MN, Hackman RC, Shepp DH, Meyers JD. Acyclovir-resistant herpes simplex virus causing pneumonia after marrow transplantation. J Infect Dis 1990; 162: 244–8. Ramsey PG, Fife KH, HACKMAN RC, Meyers JD, Corey L. Herpes simplex virus pneumonia: clinical, virologic, and pathologic features in 20 patients. Ann Intern Med 1982; 97: 813–20. Mcmillan JA, Weiner LB, Higgins AM, Lamparella VJ. Pharyngitis associated with herpes simplex virus in college students. Pediatr Infect Dis J 1993; 12: 280–3.
n Tinelli M, Michelone G, Cavanna C. Recurrent Histoplasma capsulatum pneumonia: a case report. Microbiologica 1992; 15: 89–93.
o Shrestha RK, Stoller JK, Honari G, Procop GW, Gordon SM. Pneumonia due to Cryptococcus neoformans in a patient receiving infliximab: possible zoonotic transmission from a pet cockatiel. Respir Care 2004; 49: 606–8. Levitz SM. The ecology of Cryptococcus neoformans and the epidemiology of cryptococcosis. Rev Infect Dis 1991; 13: 1163–9. Subramanian S, Kherdekar S, Babu P, Christianson C. Lipoid pneumonia with Cryptococcus neoformans colonisation. Thorax 1982; 37: 319. Jensen WA, Rose RM, Hammer SM, Karchmer AW. Serologic Diagnosis of Focal Pneumonia Caused by Cryptococcus neoformans 1, 2. Am Rev Respir Dis 1985; 132: 189–91.
p Swartz J, Stoller JK. Acute eosinophilic pneumonia complicating Coccidioides immitis pneumonia: a case report and literature review. Respiration 2009; 77: 102–6. Standaert SM, Schaffner W, Galgiani JN, Pinner RW, Kaufman L, Durry E, et al. Coccidioidomycosis among visitors to a Coccidioides immitis-endemic area: an outbreak in a military reserve unit. J Infect Dis 1995; 171: 1672–5. Lopez AM, Williams PL, Ampel NM. Acute pulmonary coccidioidomycosis mimicking bacterial pneumonia and septic shock: a report of two cases. Am J Med 1993; 95: 236–9.
q Kanemoto H, Morikawa R, Chambers JK, Kasahara K, Hanafusa Y, Uchida K, et al. Common variable immune deficiency in a Pomeranian with Pneumocystis carinii pneumonia. J Vet Med 2015. Tasci S, Ewig S, Burghard A, Lüderitz B. Pneumocystis carinii pneumonia. Lancet 2003; 362: 124. Helweg-Larsen J, Lundgren JD, Benfield T. Pneumocystis carinii pneumonia. Curr Treat Options Infect Dis 2002; 4: 363–75. Mayer KH, Fisk DT, Meshnick S, Kazanjian PH. Pneumocystis carinii pneumonia in patients in the developing world who have acquired immunodeficiency syndrome. Clin Infect Dis 2003; 36: 70–8.
2. Traditional remedies in respiratory infections
Table 16.2
Some Famous Traditional Plants That Are Used as Treatment Remedies for Respiratory Diseases
Plant Species (Family) | Plant Parts Used | Indications | References |
Acacia polyacantha Willd. (Forssk.) Willd. (Mimosaceae) | Stem bark | Cough | a |
Andira inermis (Wright) DC. (Fabaceae) | Leaves | Cough, respiratory diseases | a |
Asparagus africanus Lam. (Asparagaceae) | Whole plant | Respiratory diseases | a |
Cussonia arborea Hochst. ex A. Rich. (Araliaceae) | Leaves | Cough, respiratory diseases | a |
Entada africana Guill. and Perr. (Mimosaceae) | Roots | Respiratory diseases | a |
Euphorbia hirta L. (Euphorbiaceae) | Whole plant | Sore throat | a |
Keetia hispida (Benth.) Bridson (Rubiaceae) | Leaves | Respiratory diseases | a |
Phyllanthus muellerianus (O. Ktze) Exell (Euphorbiaceae) | Leaves | Respiratory diseases | a |
Terminalia schimperiana Hochst. (Combretaceae) | Leaves | Cough, respiratory diseases | a |
Sophora flaescens Ait. (Fabaceae) | Roots | Respiratory diseases | b |
Scutellaria baicalensis Georgi (Lamiaceae) | Root | Respiratory diseases | b |
Artemisia afra (Asteraceae) | Leaves and bark | Colds, coughs, and influenza | c |
Sambucus nigra L. (Caprifoliaceae) | Leaves and bark | Bronchitis | d |
Anchusa italica Retz. (Boraginaceae) | Flowers | Common colds | e |
Cynodon dactylon (L.) Pers. (Gramineae) | Whole plant | Coughs | e |
Thymus kotschyanus Boiss. et Hoh. (Lamiaceae) | Leaves, flowers | Common colds, bronchitis | e |
Glycyrrhiza echinata L. (Leguminosae) | Roots, stolons | Coughs, bronchitis | e |
Trigonella foenum-graecum L. (Leguminosae) | Seeds, leaves | Cure of inflamed throat | e |
Althaea officinalis L. (Malvaceae) | Flowers, leaves, roots | Coughs, bronchitis | e |
Malva sylvestris L. (Malvaceae) | Whole plant | Coughs, respiratory inflammation | e |
Prunus mahaleb L. (Rosaceae) | Fruits | Emollient for upper respiratory organs | f |
Adiantum capillus-veneris L. (Adiantaceae) | Leaves | Respiratory ailments, cough | g |
Ferula oopoda (Boiss. & Buhse.) Boiss. (Apiaceae) | Seed, latex | Cough, asthma, respiratory disorders | g |
Stachys turcomica Trautv (Lamiaceae) | Whole plant | Bronchitis, influenza | g |
Acacia kempeana F. Muell. (Mimosaceae) | Bark, leaves, root bark | Chest infection, severe cold | h |
Acacia ligulata Cunn. ex Benth. (Mimosaceae) | Bark, leaves | Cough, cold, chest infection | i |
Eremophila alternifolia R. Br. (Myoporaceae) | Seed, leaves | Respiratory tract infection | j |
Cymbopogon ambiguus (Steudel) A. Camus (Poaceae) | Leaves | Respiratory tract infection | k |
a Kone W, Atindehou KK, Terreaux C, Hostettmann K, Traore D, Dosso M. Traditional medicine in North Côte-d’Ivoire: screening of 50 medicinal plants for antibacterial activity. J Ethnopharmacol 2004; 93: 43–9.
b Ma S-C, Du J, But PP-H, Deng X-L, Zhang Y-W, Ooi VE-C, et al. Antiviral Chinese medicinal herbs against respiratory syncytial virus. J Ethnopharmacol 2002; 79: 205–11.
c Rood B. Uit die veldapteek (Out of the field-pharmacy) Tafelberg. Cape Town 1994.
d Miraldi E, Ferri S, Mostaghimi V. Botanical drugs and preparations in the traditional medicine of West Azerbaijan (Iran). JEthnopharmacol 2001; 75: 77–87.
e Amin GR. Popular medicinal plants of Iran: Iranian Research Institute of Medicinal Plants Tehran; 1991.
f Mir-Heidari H. Encyclopedia of Medicinal Plants of Iran. Islamic Culture Press, Tehran, Iran; 1993.
g Ghorbani A. Studies on pharmaceutical ethnobotany in the region of Turkmen Sahra, north of Iran: (Part 1): General results. J Ethnopharmacol 2005; 102: 58–68.
h O’Connell JF, Latz PK, Barnett P. Traditional and modern plant use among the Alyawara of central Australia. Econ Bot 1983; 37: 80–109.
i Latz PK. Bushfires & bushtucker: Iad Press; 1995.
j Territory CCotN. Traditional aboriginal medicines in the Northern Territory of Australia: Conservation Commission of the Northern Territory of Australia; 1993.
k Smith NM. Ethnobotanical field notes from the Northern Territory, Australia. J Adelaide Bot Gard 1991; 1–65.
Table 16.3
Some Active Traditional Plants Remedies Extracts With Antibacterial and Antiviral Effects
Plant Species (Family) | Antiinfection Activity | Indications | Using Form of Plants Extracts | References |
Polygonum punctatum (Polygonaceae; aerial parts) | RSV | ED50 = 120 (mg/μL) against RSV of the assayed extracts in HEp-2 cells | Aqueous extracts | a |
Lithraea molleoides (Anacardiaceae; aerial parts) | RSV | ED50 = 87 (mg/μL) against RSV of the assayed extracts in HEp-2 cells | Aqueous extracts | a |
Myrcianthes cisplatensis (Myrtaceae; aerial parts) | RSV | ED50 = 78 (mg/μL) against RSV of the assayed extracts in HEp-2 cells | Aqueous extracts | a |
Azadirachta indica (Meliaceae; stem bark) | S.a, P.a | MIC 90% = 1, MBC 90% = 1 (mg/mL) for S.a MIC 90% = 1, MBC 90% = 2 (mg/mL) for P.a | Methanolic extracts | b |
Entada abyssinica (Leguminosae; stem bark) | S.a, P.a | MIC 90% = 0.5, MBC 90% = 2 (mg/mL) for S.a MIC 90% = 0.5, MBC 90% = 2 (mg/mL) for P.a | Methanolic extracts | b |
Eremophila duttonii (Myoporaceae; leaves) | S.a | Diameters of the zones of growth inhibition in plate-hole diffusion assays (12 mm) with 0.77 mg/mL of extract | Ethanolic extracts | c |
Artemisia capillaries Thunb. (Asteraceae; aerial parts) | RSV | IC50 = 13 (μg/mL) concentration of the sample required to inhibit virus-induced | Aqueous extracts | d |
Arctium lappa L. (Asteraceae; aerial parts) | RSV | IC50 = 6.3 (μg/mL) concentration of the sample required to inhibit virus-induced | Aqueous extracts | d |
Prunella vulgaris L. (Lamiaceae; fruit spike) | RSV | IC50= 10.4 (μg/mL) concentration of the sample required to inhibit virus-induced | Aqueous extracts | d |
Anemone obtusiloba (Ranunculaceae; aerial parts) | HSV | Lowest concentration of extract able to partially inhibit the virus (100 μg/mL) | Methanolic extracts | e |
Centipeda minima (Asteraceae; aerial parts) | HSV | Lowest concentration of extract able to partially inhibit the virus(13 μg/mL) | Methanolic extracts | e |
Byrsonima verbascifolia (Malphigiaceae; aerial parts) | HSV | Minimum concentration causing complete inhibition (MIC) of viral (2.5 μg/mL) | Methanolic extracts | f |
Symphonia globulifera (Clusiaceae; aerial parts) | HSV | Minimum concentration causing complete inhibition (MIC) of viral (2.5 μg/mL) | Methanolic extracts | f |
Dracaena cinnabari (Agavaceae; aerial parts) | I.A | IC50 = 1.5 (μg/mL) concentration of the sample required to inhibit virus-induced | Methanol extracts | g |
Exacum affine (Gentianaceae; aerial parts) | I.A | IC50 = 0.7 (μg/mL) concentration of the sample required to inhibit virus-induced | Methanol extracts | g |
Scrophularia amplexicaulis Benth. (Scrophulariaceae; aerial parts) | S.a | Diameters of the zones of growth inhibition in well-diffusion method (13 mm) with 100 mg/mL of essential oil | Essential oil | h |
Cinnamomum zeylanicum (Lauraceae; bark) | H.i, S.p, S.a | The lowest concentration of oil inhibiting the growth of each organism (MIC = 0.00625, 0.00625, 0.0125 mL/mL) | Essential oil | i |
Cupressus sempervirens (Cupressaceae; aerial parts) | H.i, S.p, S.a | MIC = 0.00625, 0.00625, 0.0125 mL/mL | Essential oil | i |
RSV, respiratory syncytial virus; ADV, adenovirus; HSV, herpes simplex virus 1; I.A, influenza virus-A; S.a, Staphylococcus aureus; P.a, Pseudomonas aeruginosa; S.p, Streptococcus pneumonia; H.i, Haemophilus influenza.
a Smith NM. Ethnobotanical field notes from the Northern Territory, Australia. J Adelaide Bot Gard 1991; 1–65.
b Fabry W, Okemo PO, Ansorg R. Antibacterial activity of East African medicinal plants. J Ethnopharmacol 1998; 60: 79–84.
c Palombo EA, Semple SJ. Antibacterial activity of traditional Australian medicinal plants. J Ethnopharmacol 2001; 77: 151–7.
d Ma S-C, Du J, But PP-H, Deng X-L, Zhang Y-W, Ooi VE-C, et al. Antiviral Chinese medicinal herbs against respiratory syncytial virus. J Ethnopharmacol 2002; 79: 205–11.
e Taylor R, Manandhar N, Hudson J, Towers G. Antiviral activities of Nepalese medicinal plants. J Ethnopharmacol 1996; 52: 157–63.
f Lopez A, Hudson J, Towers G. Antiviral and antimicrobial activities of Colombian medicinal plants. J Ethnopharmacol 2001; 77: 189–96.
g Mothana RA, Mentel R, Reiss C, Lindequist U. Phytochemical screening and antiviral activity of some medicinal plants from the island Soqotra. Phytother Res 2006; 20: 298–302.
h Pasdaran A, Delazar A, Nazemiyeh H, Nahar L, Sarker SD. Chemical composition, and antibacterial (against Staphylococcus aureus) and free-radical-scavenging activities of the essential oils of Scrophularia amplexicaulis Benth. Rec Nat Prod 2012; 6: 350–5.
i Fabio A, Cermelli C, Fabio G, Nicoletti P, Quaglio P. Screening of the antibacterial effects of a variety of essential oils on micro-organisms responsible for respiratory infections. Phytother Res 2007; 21: 374–7.
Table 16.4
Achilla Species Essential Oils, Their Major Chemical Compositions and Their Effects on Some of the Microorganisms That Cause Major Respiratory Infections
Plant Name | Tested Microorganisms | Major Compounds | References |
Achillea clavennae L. | K. pneumonia, penicillin-susceptible and penicillinresistant S. pneumonia, H. influenza and P. aeruginosa | Camphor, 1,8-cineole | a |
A. fragrantissima (Forssk) Sch. Bip. | K. pneumonia, P. aeruginosa, S. faecalis, S. aureus and C. albicans | Terpinen-4-ol | b |
A. sintenisii Hub. Mor. | K. pneumonia, P. aeruginosa and S. aureus | Camphor, 1,8-cineole | c |
A. biebersteinii Afan. | S. pneumonia and S. aureus | Piperitone, 1,8-cineole, camphor | d |
A. taygetea Boiss & Heldr. | K. pneumonia, P. aeruginosa and S. aureus | Borneol, 1,8-cineole | e |
A. frasii Schultz Bip. | K. pneumonia, P.aeruginosa and S. aureus | 1,8-cineole, α-pinene (4), β-pinene (5) | e |
A. holosericea Sibth. & Sm. | K. pneumonia, P. aeruginosa and S. aureus | Borneol, camphor | f |
a Bezić N, Skočibušić M, Dunkić V, Radonić A. Composition and antimicrobial activity of Achillea clavennae L. essential oil. Phytother Res 2003; 17: 1037–40.
b Barel S, Segal R, Yashphe J. The antimicrobial activity of the essential oil from Achillea fragrantissima. J Ethnopharmacol 1991; 33: 187–91.
c Sökmen A, Vardar-Ünlü G, Polissiou M, Daferera D, Sökmen M, Dönmez E. Antimicrobial activity of essential oil and methanol extracts of Achillea sintenisii Hub. Mor. (Asteraceae). Phytother Res 2003; 17: 1005–10.
d Sökmen A, Sökmen M, Daferera D, Polissiou M, Candan F, Ünlü M, et al. The in vitro antioxidant and antimicrobial activities of the essential oil and methanol extracts of Achillea biebersteini Afan. (Asteraceae). Phytother Res 2004; 18: 451–6.
e Magiatis P, Skaltsounis A-L, Chinou I, Haroutounian SA. Chemical composition and in vitro antimicrobial activity of the essential oils of three Greek Achillea species. Z Naturforsch C 2002; 57: 287–90.
f Stojanović G, Asakawa Y, Palić R, Radulović N. Composition and antimicrobial activity of Achillea clavennae and Achillea holosericea essential oils. Flavour Fragr J 2005; 20: 86–8.