Pulmonary Function Testing

Pulmonary Function Testing



Pulmonary function testing has come into widespread use since the 1970s. This has been facilitated by several developments.1,2 Because of miniaturization and advances in computer technology, microprocessor devices have become portable and automated with fewer moving parts. Testing equipment, patient maneuvers, and testing techniques have become widely standardized throughout the world through the efforts of professional societies. Widely accepted normative parameters have been established.



DEFINITION


Pulmonary function testing is a valuable tool for evaluating the respiratory system, representing an important adjunct to the patient history, various lung imaging studies, and invasive testing such as bronchoscopy and open-lung biopsy. Insight into underlying pathophysiology can often be gained by comparing the measured values for pulmonary function tests obtained on a patient at any particular point with normative values derived from population studies. The percentage of predicted normal is used to grade the severity of the abnormality. Practicing clinicians must become familiar with pulmonary function testing because it is often used in clinical medicine for evaluating respiratory symptoms such as dyspnea and cough, for stratifying preoperative risk, and for diagnosing common diseases such as asthma and chronic obstructive pulmonary disease.


Pulmonary function tests (PFTs) is a generic term used to indicate a battery of studies or maneuvers that may be performed using standardized equipment to measure lung function. PFTs can include simple screening spirometry, formal lung volume measurement, diffusing capacity for carbon monoxide, and arterial blood gases. These studies may collectively be referred to as a complete pulmonary function survey.


Before a spirogram can be meaningfully interpreted, one needs to inspect the graphic data (the volume-time curve and the flow-volume loop) to ascertain whether the study meets certain well-defined acceptability and reproducibility standards. Tests that fail to meet these standards can provide useful information about minimum levels of lung function, but, in general, they should be interpreted cautiously. The interpretive strategy usually involves establishing a pattern of abnormality (obstructive, restrictive, or mixed), grading the severity of the abnormality, and assessing trends over time. Various algorithms are available. Automated spirometry systems usually have built-in software that can generate a preliminary interpretation, especially for spirometry; however, algorithms for other pulmonary function studies are not as well established and necessitate appropriate clinical correlation and physician oversight.



PHYSIOLOGY


Basic concepts of normal pulmonary physiology that are involved in pulmonary function testing include mechanics (airflows and lung volumes), the ventilation-perfusion interrelationship, diffusion and gas exchange, and respiratory muscle or bellows strength. Ventilation is the process of generating the forces necessary to move the appropriate volumes of air from the atmosphere to the alveoli to meet the metabolic needs of the body under a variety of conditions. Simply, the contraction of the diaphragm and other inspiratory muscles expands the thorax, generating negative pressure in the pleural space. One component of pleural pressure, known as transpulmonary pressure, causes a flow of air into the airways and lungs (inspiration). When the transpulmonary and alveolar pressures equilibrate, airflow stops, the inspiratory muscles relax, and the lungs and chest wall elastic recoil raise pleural pressure, forcing air out of the lungs (expiration).


With a forced exhalation, the early portion of the spirometry maneuver is characterized by high flows, mostly from large airways, and the latter portion is characterized by low flows with a larger contribution from the smaller airways.3 Forced inspiration is generally not flow limited and is a function of overall muscular effort. In contrast, a variety of factors affect expiratory flow, including the overall driving pressure, airway diameter, overall distensibility of the lungs and chest wall, dynamic airway collapse (from a flow-limiting segment), and muscular effort. The overall driving pressure is the pressure head at the alveolus, or PALV, which is the difference between pleural pressure (PPL) and negative transpulmonary pressure (PTP). So:



image



The mechanism for the maximal expiratory airflow limitation seen in normal airways results from the gradual drop in pressure inside the conducting airways from the alveoli to the mouth, creating a transmural pressure gradient with the pleural pressure. This can cause dynamic airway compression and narrowing or closure of airways that have lost elastic recoil support from the lung parenchyma.



BATTERY OF MANEUVERS


Pulmonary function studies use a variety of maneuvers to measure and record the properties of four lung components. These include the airways (large and small), lung parenchyma (alveoli, interstitium), pulmonary vasculature, and the bellows-pump mechanism. Various diseases can affect each of these components.



Spirometry


Spirometry is the most commonly used lung function screening study. It generally should be the clinician’s first option, with other studies being reserved for specific indications. Most patients can easily perform spirometry when coached by an appropriately trained technician or other health care provider. The test can be administered in the ambulatory setting, physician’s office, emergency department, or inpatient setting. The indications for spirometry are diverse (Box 1). It can be used for diagnosing and monitoring respiratory symptoms and disease, for preoperative risk stratification, and as a tool in epidemiologic and other research studies.



Box 1 Indications for Spirometry






Spirometry requires a voluntary maneuver in which a seated patient inhales maximally from tidal respiration to total lung capacity and then rapidly exhales to the fullest extent until no further volume is exhaled at residual volume3 (Figs. 1 and 2). The maneuver may be performed in a forceful manner to generate a forced vital capacity (FVC) or in a more relaxed manner to generate a slow vital capacity (SVC). In normal persons, the inspiratory vital capacity, the expiratory SVC, and expiratory FVC are essentially equal. However, in patients with obstructive small airways disease, the expiratory SVC is generally higher than the FVC. This difference might, however, be due partly to the difficulty in maintaining a maximum expiratory effort for an extended time period without experiencing dizziness or lightheadedness.




A spirometer, including the waterless, rolling seal type, and Stead-Wells water seal type is an instrument that directly measures the volume of air displaced or measures airflow by a flow-sensing device, such as a pneumotachometer or a tube containing a fixed resistance to flow (Box 2).2 Today, most clinical pulmonary function testing laboratories use a microprocessor-driven pneumotachometer to measure air flow directly and then to mathematically derive volume.



A spirogram is a graphic representation of bulk air movement depicted as a volume-time tracing or as a flow-volume tracing. Values generated from a simple spirogram provide important graphic and numeric data regarding the mechanical properties of the lungs, including airflow (forced expiratory volume in 1 second [FEV1] along with other timed volumes) and exhaled lung volume (FVC or SVC). The measurement is typically expressed in liters for volumes or in liters per second for flows and is corrected for body temperature and pressure of gas that is saturated with water vapor. Data from a spirogram provide important clues to help distinguish obstructive pulmonary disorders that typically reduce airflow, such as asthma and emphysema, from restrictive disorders that typically reduce total lung volumes, including pulmonary fibrosis and neuromuscular disease.


A number of spirometry standards have been developed over the years. The American Thoracic Society standardization guidelines for acceptability and reproducibility criteria are shown in Box 3.4 A well-trained pulmonary function technician usually coaches the patient through the session until the demonstrated reproducibility of key parameters suggests the results represent the best possible measure of lung function at that time.






Volume-Time Tracing and Flow-Volume Loop


The volume-time tracing and flow-volume loop ascertain the technical adequacy of a maneuver and therefore the quality of the data (see Box 3) as well as identifying the anatomic location of airflow obstruction. The volume-time tracing is most useful in assessing whether the end-of-test criteria have been met, whereas the flow-volume loop is most valuable in evaluating the start-of-test criteria. The technique of back-extrapolation of the start of the test to establish a zero time point on the volume-time tracing has been carefully defined and provides a uniform start point for timed measurements. It corrects for delayed or hesitant starts that might otherwise be mistaken for a falsely reduced FEV1. Standards for acceptability define limits for the degree of hesitation that can still yield an acceptable FEV1 (see Box 3). The loss of elastic recoil characteristic of emphysema results in airflow limitation during the maximal forced exhalation that may be grossly underestimated if the patient applies less than maximal expiratory force. Such efforts may still be deemed acceptable using the criteria of extrapolated volume. The time to peak flow appears to have excellent usefulness in identifying such efforts in this population (time to peak flow will be greater than 120 msec when effort is submaximal), but it is not yet a recommended acceptability criterion (Fig. 3).



The shape of the flow-volume loop can indicate the location of airflow limitation, such as the large upper airways or smaller distal airways (Fig. 4). With common obstructive airflow disorders, such as asthma or emphysema, the disease generally affects the expiratory limb and can reduce the effort-dependent peak expiratory flow as well as subsequent airflows that are independent of effort. The descending limb of the expiratory loop is typically concave. In contrast, several unusual anatomic disorders that narrow the large airways can produce a variety of patterns of truncation or flattening of either one limb of the loop (variable upper airway obstruction) or both limbs of the loop (fixed upper airway obstruction).


Stay updated, free articles. Join our Telegram channel

Jul 18, 2017 | Posted by in GENERAL SURGERY | Comments Off on Pulmonary Function Testing

Full access? Get Clinical Tree

Get Clinical Tree app for offline access