References
1. Hopewell PC, Kato-Maeda M, Ernst JD. 35 – Tuberculosis. In: Murray JA, Nadel AS, eds. Murray and Nadel’s textbook of respiratory medicine. 6th ed. Philadelphia: W.B. Saunders; 2016: .
2. Holloway KL, Henneberg RJ, de Barros Lopes M, Henneberg M. Evolution of human tuberculosis: a systematic review and meta-analysis of paleopathological evidence. HOMO. 2011;62(6):402–458.
3. Daniel TM. The history of tuberculosis. Resp Med. 2006;100(11):1862–1870.
4. World Health Organization. Global tuberculosis report 2014; 2014. Available from: http://apps.who.int/iris/bitstream/10665/137094/1/9789241564809_eng.pdf?ua=1.
5. Pawlowski A, Jansson M, Sköld M, Rottenberg ME, Källenius G. Tuberculosis and HIV co-infection. PLoS Pathog. 2012;8(2):e1002464.
6. Zhang L, Goren M, Holzer T, Andersen B. Effect of Mycobacterium tuberculosis-derived sulfolipid I on human phagocytic cells. Infect Immun. 1988;56:2876–2883.
7. Berthet F, Lagranderie M, Gounon P, Laurent-Winter C, Ensergueix D, Chavarot P, et al. Attenuation of virulence by disruption of the Mycobacterium tuberculosis erp gene. Science. 1998;282:759–762.
8. Sirakova T, Dubey V, Cynamon M, Kolattukudy P. Attenuation of Mycobacterium tuberculosis by disruption of a mas-like gene or a chalcone synthaselike gene, which causes deficiency in dimycocerosyl phthiocerol synthesis. J Bacteriol. 2003;185:2999–3008.
9. Camacho L, Ensergueix D, Perez E, Gicquel B, Guilhot C. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol. 1999;34:257–267.
10. Armitige LY, Jagannath C, Wanger AR, Norris SJ. Disruption of the genes encoding antigen 85A and antigen 85B of Mycobacterium tuberculosis H37Rv: effect on growth in culture and in macrophages. Infect Immun. 2000;68:767–778.
11. Dubnau EJ, Chan C, Raynaud VP, Mohan MA, Laneelle K, et al. Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol Microbiol. 2000;36:630–637.
12. Glickman MS, Cox J, Jacobs W. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell. 2000;5:717–727.
13. Chan J, Ran X, Hunter S, Brennan P, Bloom B. Lipoarabinomannan, a possible virulence factor involved in persistence of Mycobacterium tuberculosis within macrophages. Infect Immun. 1991;59:1755–1761.
14. Pethe K, Alonso F, Biet G, Delogu MJ, Brennan C, Locht C, et al. The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature. 2001;412:190–194.
15. Dubnau EP, Fontan R, Manganelli S, Soares-Appel S, Smith I. Mycobacterium tuberculosis genes induced during infection of human macrophages. Infect Immun. 2002;70:2787–2795.
16. Rindi L, Fattorini L, Bonanni D, Iona E, Freer G, Tan D, et al. Involvement of the fadD33 gene in the growth of Mycobacterium tuberculosis in the liver of BALB/c mice. Microbiology. 2002;148:3873–3880.
17. Raynaud C, Guilhot C, Rauzier J, Bordat Y, Pelicic V, Manganelli R, et al. Phospholipases C are involved in the virulence of Mycobacterium tuberculosis. Mol Microbiol. 2002;45:203–217.
18. Sambandamurthy VK, Wang X, Chen B, Russell R, Derrick S, Collins F, et al. A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nat Med. 2002;8:1171–1174.
19. Hondalus MK, Bardarov S, Russell R, Chan J, Jacobs WJ, Bloom B. Attenuation of and protection induced by a leucine auxotroph of Mycobacterium tuberculosis. Infect Immun. 2000;68:2888–2898.
20. Smith DA, Parish T, Stoker NG, Bancroft GB. Characterization of auxotrophic mutants of Mycobacterium tuberculosis and their potential as vaccine candidates. Infect Immun. 2001;69:1142–1150.
21. Jackson MS, Phalen W, Lagranderie M, Ensergueix D, Chavarot P, Marchal G, et al. Persistence and protective efficacy of a Mycobacterium tuberculosis auxotroph vaccine. Infect Immun. 1999;67:2867–2873.
22. Quadri L. Iron uptake in Mycobacteria. In: Daffé M, Reyrat J, eds. The mycobacterial cell envelope. Washington: ASM Press; 2008:167–184.
23. Litwin CM, B CS. Role of iron in regulation of virulence genes. Clin Microbiol Rev. 1993;6:137–149.
24. Wilson TM, De Lisle GW, Collins DM. Effect of inhA and katG on isoniazid resistance and virulence of Mycobacterium bovis. Mol Microbiol. 1995;15:1009–1015.
25. Edwards KM, Cynamon MH, Voladri RK, Hager CC, DeStefano MS, Tham KT, et al. Iron-cofactored superoxide dismutase inhibits host responses to Mycobacterium tuberculosis. Am J Respir Crit Care Med. 2001;164:2213–2219.
26. Steyn AJ, Collins DM, Hondalus MK, Jacobs Jr WR, Kawakami RP, Bloom BR. Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is dispensable for in vivo growth. Proc Natl Acad Sci USA. 2002;99(5):3147–3152.
27. Beaucher J, Rodriguez S, Jacques PE, Smith I, Brzezinski R, Gaudreau L. Novel Mycobacterium tuberculosis anti-sigma factor antagonists control sigma F activity by distinct mechanisms. Mol Microbiol. 2002;45:1527–1540.
28. Manganelli R, Dubnau E, Tyagi S, Kramer FM, Smith I. Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis. Mol Microbiol. 1999;31:715–724.
29. Gonzalo-Asensio J, Mostowy S, Harders-Westerveen J, Huygen K, Hernández-Pando R, Thole J, et al. PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence. PLoS One 2008;3:e3496 p. Available from: http://dx.doi.org/10.1371/journal.pone.0003496.
30. Parish T, Smith DA, Roberts G, Betts J, N.G S. The senX3-regX3 two-component regulatory system of Mycobacterium tuberculosis is required for virulence. Microbiology 2003;149:1423–35.
31. Boon C, Dick T. Mycobacterium bovis BCG response regulator essential for hypoxic dormancy. J Bacteriol. 2002;184:6760–6767.
32. Zahrt TC, Deretic V. Mycobacterium tuberculosis signal transduction system required for persistent infections. Proc Natl Acad Sci USA. 2001;98:12706–12711.
33. Gomez M, Smith I. Determinants of mycobacterial gene expression. In: Hatfull GF, Jacobs Je WR, eds. Molecular genetics of mycobacteria. Washington, DC: American Society for Microbiology; 2000:111–129.
34. Molle V, Palframan WJ, Findlay KC, Buttner M. WhiD and WhiB, homologous proteins required for different stages of sporulation in Streptomyces coelicolor A3(2). J Bacteriol. 2000;182:1286–1295.
35. Gomez JE, Bishai WR. whmD is an essential mycobacterial gene required for proper septation and cell division. Proc Natl Acad Sci USA. 2000;97(15):8554–8559.
36. Fu LM, Shinnick TM. Genome-wide exploration of the drug action of capreomycin on Mycobacterium tuberculosis using Affymetrix oligonucleotide GeneChips. J Infection. 2007;54(3):277–284.
37. Centers for Disease Control and Prevention (CDC). Basic TB facts, risk factors 2012. Available from: http://www.cdc.gov/tb/topic/basics/risk.htm.
38. Hartman-Adams H, Clark K, Juckett G. Update on latent tuberculosis infection. Am Fam Physician. 2014;89(11):889–896.
39. Salgame P, Geadas C, Collins L, Jones-López E, Ellner JJ. Latent tuberculosis infection—revisiting and revising concepts. Tuberculosis. 2015;95(4):373–384.
40. Mack U, Migliori GB, Sester M, Rieder HL, Ehlers S, Goletti D, et al. LTBI: latent tuberculosis infection or lasting immune responses to M. tuberculosis? A TBNET consensus statement. Eur Respir J. 2009;33(5):956–973.
41. Russell DG, Cardona P-J, Kim M-J, Allain S, Altare F. Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol. 2009;10(9):943–948.
42. Lönnroth K, Jaramillo E, Williams BG, Dye C, Raviglione M. Drivers of tuberculosis epidemics: the role of risk factors and social determinants. Soc Sci Med. 2009;68(12):2240–2246.
43. Richeldi L. An update on the diagnosis of tuberculosis infection. Am J Respir Crit Care Med. 2006;174(7):736–742.
44. Pfyffer GE. Mycobacterium: general characteristics, laboratory detection and staining procedures. In: Murray PRBE, Jorgensen JH, Landry ML, Pfaller MA, eds. Manual of clinical microbiology. 9th ed. Washington DC: ASM Press; 2007:543–572.
45. American Thoracic Society, Centers for Disease Control and Prevention, Infectious Diseases Society of America. Diagnostic standards and classification of tuberculosis in adults and children. Am J Respir Crit Care Med. 2000;161(4):1376–1395.
46. Takahashi S. Handbook of direct smear examination of sputum for tubercle bacillus. Tokyo, Japan: South-East Asian Medical Information Centre; 1975.
47. Smithwick R. Laboratory manual for acid-fast microscopy. Atlanta, GA, USA: Department of Health, Education and Welfare; 1976.
48. Bogen E. Detection of tubercle bacilli by fluorescence microscopy. Am J Respir Crit Care Med. 1941;44(3):267–271.
49. Steingart KR, Henry M, Ng V, Hopewell PC, Ramsay A, Cunningham J, et al. Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review. Lancet Infec Dis. 2006;6(9):570–581.
50. Boyd J, Marr J. Decreasing reliability of acid-fast smear techniques for detection of tuberculosis. Ann Intern Med. 1975;82:489–492.
51. Toman K. What are the advantages and disadvantages of fluorescence microscopy? In: Frieden T, ed. Toman’s tuberculosis: case detection, treatment, and monitoring—questions and answer. 2nd ed. Geneva: World Health Organization; 2004:31–34.
52. Mitchison DA, Allen BW, Carrol L, Dickinson JM, Aber VR. A selective oleic acid albumin agar medium for tubercle bacilli. J Med Microbiol. 1972;5(2):165–175.
53. Cohn ML, Waggoner RF, McClatchy JK. The 7H11 medium for the cultivation of mycobacteria. Am Rev Resp Dis. 1968;98(2):295–296.
54. Joloba ML, Johnson JL, Feng P-JI, Bozeman L, Goldberg SV, Morgan K, et al. What is the most reliable solid culture medium for tuberculosis treatment trials? Tuberculosis. 2014;94(3):311–316.
55. Kalantri S, Pai M, Pascopella L, Riley L, Reingold A. Bacteriophage- based tests for the detection of Mycobacterium tuberculosis in clinical specimens: a systematic review and meta-analysis. BMC Infect Dis. 2005;5(1):59.
56. Perkins MD. New diagnostic tools for tuberculosis [The Eddie O’Brien Lecture]. Int J Tuberc Lung Dis. 2000;4(12):S182–S188.
57. Palomino JC, Martin A, Von Groll A, Portaels F. Rapid culture-based methods for drug-resistance detection in Mycobacterium tuberculosis. J Microb Meth. 2008;75(2):161–166.
58. Pinheiro MD, Ribeiro MM. Comparison of the Bactec 460TB system and the Bactec MGIT 960 system in recovery of mycobacteria from clinical specimens. Clin Microbiol Infect. 2000;6(3):171–173.
59. Woods GL, Fish G, Plaunt M, Murphy T. Clinical evaluation of difco ESP culture system II for growth and detection of mycobacteria. J Clin Microbiol. 1997;35(1):121–124.
60. Richter E, Rüsch-Gerdes S, Hillemann D. Drug-susceptibility testing in TB: current status and future prospects. Expert Rev Respir Med. 2009;3(5):497–510.
61. Ängeby KAK, Werngren J, Toro JC, Hedström G, Petrini B, Hoffner SE. Evaluation of the BacT/ALERT 3D system for recovery and drug susceptibility testing of Mycobacterium tuberculosis. Clin Microbiol Infec. 2003;9(11):1148–1152.
62. Ling DI, Zwerling AA, Pai M. GenoType MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: a meta-analysis. Eur Respir J. 2008;32(5):1165–1174.
63. Niemz A, Ferguson TM, Boyle DS. Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol. 2011;29(5):240–250.
64. Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, et al. Rapid molecular detection of tuberculosis and rifampin resistance. New Engl J Med. 2010;363(11):1005–1015.
65. Bi A, Nakajima C, Fukushima Y, Tamaru A, Sugawara I, Kimura A, et al. A rapid loop-mediated isothermal amplification assay targeting hspX for the detection of Mycobacterium tuberculosis complex. Jpn J Infect Dis. 2012;65(3):247–251.
66. Lyashchenko K, Colangeli R, Houde M, Al Jahdali H, Menzies D, Gennaro M. Heterogeneous antibody responses in tuberculosis. Infect Immun. 1998;66(8):3936–3940.
67. World Health Organization. Commercial serodiagnostic tests for diagnosis of active tuberculosis Geneva: World Health Organization; 2011. Available from: http://www.who.int/tdr/publications/tdr-research-publications/diagnostics-evaluation-2/en/.
68. Singh S, Singh J, Kumar S, Gopinath K, Balooni V, Singh N, et al. Poor performance of serological tests in the diagnosis of pulmonary tuberculosis: evidence from a contact tracing field study. PLoS ONE. 2012;7(7):e40213.
69. Vukmanovic-Stejic M, Reed JR, Lacy KE, Rustin MHA, Akbar AN. Mantoux Test as a model for a secondary immune response in humans. Immunol Lett. 2006;107(2):93–101.
70. Al Zahrani K, Al Jahdali H, Menzies D. Does size matter? Utility of size of tuberculin reactions for the diagnosis of mycobacterial disease. Am J Respir Crit Care Med. 2000;162:1419–1422.
71. Andersen P, Munk M, Pollock J, Doherty T. Specific immune-based diagnosis of tuberculosis. Lancet. 2000;356(9235):1099–1104.
72. Markowitz N, Hansen NI, Wilcosky TC, Hopewell PC, Glassroth J, Kvale PA, et al. Tuberculin and anergy testing in HIV-seropositive and HIV-seronegative persons. Ann Intern Med. 1993;119(3):185–193.
73. Arend SM, Franken WPJ, Aggerbeck H, Prins C, van Dissel JT, Thierry-Carstensen B, et al. Double-blind randomized Phase I study comparing rdESAT-6 to tuberculin as skin test reagent in the diagnosis of tuberculosis infection. Tuberculosis. 2008;88(3):249–261.
74. Dinnes J, Deeks J, Kunst H, Gibson A, Cummins E. A systematic review of rapid diagnostic tests for the detection of tuberculosis infection. Health Technol Asses. 2007;11(3):1–196.
75. Pai M, Denkinger CM, Kik S, Rangaka MX, Zwerling A, Oxlade O, et al. Gamma interferon release assays for detection of Mycobacterium tuberculosis infection. Clin Microbiol Rev. 2014;27(1):3–20.
76. Amy S-T, Michael E, Stephen C. Validating a breath collection and analysis system for the new tuberculosis breath test. J Breath Res. 2013;7(3):037108.
77. Hamasur B, Bruchfeld J, Haile M, Pawlowski A, Bjorvatn B, Källenius G, et al. Rapid diagnosis of tuberculosis by detection of mycobacterial lipoarabinomannan in urine. J Microbiol Meth. 2001;45(1):41–52.
78. Ramos E, Schumacher SG, Siedner M, Herrera B, Quino W, Alvarado J, et al. Optimizing tuberculosis testing for basic laboratories. J Trop Med Hyg. 2010;83(4):896–901.
79. Bekmurzayeva A, Sypabekova M, Kanayeva D. Tuberculosis diagnosis using immunodominant, secreted antigens of Mycobacterium tuberculosis. Tuberculosis. 2013;93(4):381–388.