References
1. Linch JP. Hospital-acquired infections: realities of risks and resistance. Chest. 2001;119:373S–384S.
2. Kiska DL, Gilligan PH. Pseudomonas. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, eds. Manual of Clinical Microbiology. 7th ed. Washington: American Society for Microbiology; 1999:517–525.
3. Koneman EW, Allen SD, Janda WM, Schereckenberger PC, Winn WCJ. Bacilos Gram negativos não-fermentadores. Diagnóstico microbiológico: texto e atlas colorido. Rio de Janeiro, Brasil: Medsi; 2001:263–319.
4. Fujii A, Seki M, Higashiguchi M, Tachibana I, Kumanogoh A, Tomono K. Community-acquired, hospital-acquired, and healthcare-associated pneumonia caused by Pseudomonas aeruginosa. Respir Med Case Rep. 2014;12:30–33.
5. Pitt TL, Barth AL. Pseudomonas aeruginosa and other medically important Pseudomonads. In: Emmerson AM, Hawkey PM, Gillespie SH, eds. Principles and Practice of Clinical Bacteriology. United Kingdom: Wiley; 1997:493–517.
6. Sonbol FI, Khalil MAEF, Mohamed AB, Ali SS. Correlation between antibiotic resistance and virulence of Pseudomonas aeruginosa clinical isolates. Turk J Med Sci. 2015;45:568–577.
7. Woodford N, Turton JF, Livermore DM. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev. 2011;35:736–755.
8. American Toracic Society Documents. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171:388–416.
9. Streit JM, Jones RN, Sader HS, Fritsche TR. Assessment of pathogen occurrences and resistance profiles among infected patients in the intensive care unit: report from the SENTRY Antimicrobial Surveillance Program (North America, 2001). Int J Antimicrob Agents. 2004;24:111–118.
10. Nordmann P. Mechanism of resistance to betalactam antibiotics in Pseudomonas aeruginosa. Ann Fr Anesth Reanim. 2003;22(6):527–530.
11. Livermore DM. Of Pseudomonas, porins, pumps and carbapenems. J Antimicrob Chemother. 2001;47:247–250.
12. Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010;54(3):969–976.
13. EL-Mosallamy WAES, Osman AS, Tabl HAEM, Tabbakh ASM. Phenotypic and genotypic methods for detection of metallo-beta-lactamase (MBL) producing Pseudomonas aeruginosa. Egypt J Med Microbiol. 2015;24(3):27–35.
14. Martins AF, Zavascki AP, Gaspareto PB, Barth AL. Dissemination of Pseudomonas aeruginosa producing SPM-1-like and IMP-1-like metallo-beta-lactamases in hospitals from southern Brazil. Infection. 2007;35:457–460.
15. Lee K, Lim JB, Yum JH, Yong D, Chong Y, Kim JM, et al. blaVIM-2 cassette-containing novel integrons in metallo-beta-lactamase-producing Pseudomonas aeruginosa and Pseudomonas putida isolates disseminated in a Korean hospital. Antimicrob Agents Chemother. 2002;46:1053–1058.
16. Castanheira M, Toleman MA, Jones RN, Schmidt FJ, Walsh TR. Molecular characterization of a beta-lactamase gene blaGIM-1 encoding a new subclass of metallo-beta-lactamase. Antimicrob Agents Chemother. 2004;48(12):4654–4661.
17. Jovcic B, Lepsanovic Z, Suljagic V, Rackov G, Begovic J, Topisirovic L, et al. Emergence of NDM-1 metallo-beta-lactamase in Pseudomonas aeruginosa clinical isolates from Serbia. Antimicrob Agents Chemother. 2011;55:3929–3931.
18. Pollini S, Maradei S, Pecile P, Olivo G, Luzzaro F, Docquier JD, et al. FIM-1, a new acquired metallo-beta-lactamase from a Pseudomonas aeruginosa clinical isolate from Italy. Antimicrob Agents Chemother. 2013;57:410–416.
19. Hong DJ, Bae IK, Jang I, Jeong SH, Kang H, Lee K. Epidemiology and characteristics of metallo-beta-lactamase-producing Pseudomonas aeruginosa. Infect Chemother. 2015;47(2):81–97.
20. Lucena A, Dalla Costa LM, Nogueira KS, Matos AP, Gales AC, Paganini MC, et al. Nosocomial infections with metallo-beta-lactamase-producing Pseudomonas aeruginosa: molecular epidemiology, risk factors, clinical features and outcomes. J Hosp Infect. 2014;87(4):234–240.
21. Zavascki AP, Goldani LZ, Gaspareto PB, Gonçalves ALS, Martins AF, Barth AL. High prevalence of metallo-beta-lactamase-mediated resistance challenging antimicrobial therapy against Pseudomonas aeruginosa in a Brazilian teaching hospital. Epidemiol Infect. 2007;135:343–345.
22. Xiao H, Ye X, Liu Q, Li L. Antibiotic susceptibility and genotype patterns of Pseudomonas aeruginosa from mechanical ventilation-associated pneumonia in intensive care units. Biomed Rep. 2013;1(4):589–593.
23. Alp E, Güven M, Yıldız O, Aygen B, Voss A, Doganay M. Incidence, risk factors and mortality of nosocomial pneumonia in Intensive Care Units: a prospective study. Ann Clin Microbiol Antimicrob. 2004;3:17.
24. Zavascki AP, Barth AL, Fernandes JF, Moro ALD, Gonçalves ALS, Goldani LZ. Reappraisal of Pseudomonas aeruginosa hospital-acquired pneumonia mortality in the era of metallo-beta-lactamase-mediated multidrug resistance: a prospective observational study. Crit Care. 2006;10:R114.
25. Fricks-Lima J, Hendrickson CM, Allgaier M, Zhuo H, Wiener-Kronish JP, Lynch SV, et al. Differences in biofilm formation and antimicrobial resistance of Pseudomonas aeruginosa isolated from airways of mechanically ventilated patients and cystic fibrosis patients. Int J Antimicrob Agents. 2011;37(4):309–315.
26. Inglis TJ, Millar MR, Jones JG, Robinson DA. Tracheal tube biofilm as a source of bacterial colonization of the lung. J Clin Microbiol. 1989;27:2014–2018.
27. Adair CG, Gorman SP, Feron BM, Byers LM, Jones DS, Goldsmith CE, et al. Implications of endotracheal tube biofilm for ventilator-associated pneumonia. Intens Care Med. 1999;25:1072–1076.
28. Luna CM, Videla A, Mattera J, Vay C, Famiglietti A, Vujacich P, et al. Blood cultures have limited value in predicting severity of illness and as a diagnostic tool in ventilator-associated pneumonia. Chest. 1999;116:1075–1084.
29. Van Eldere J. Multicentre surveillance of Pseudomonas aeruginosa susceptibility patterns in nosocomial infections. J Antimicrob Chemother. 2003;51:347–352.
30. Hamer DH. Treatment of nosocomial pneumonia and tracheobronchitis caused by multidrug-resistant Pseudomonas aeruginosa with aerosolized colistin. Am J Respir Crit Care Med. 2000;162:328–3230.
31. Bassetti M, Taramasso L, Giacobbe DR, Pelosi P. Management of ventilator-associated pneumonia: epidemiology, diagnosis and antimicrobial therapy. Expert Rev Anti Infect Ther. 2012;10(5):585–596.
32. Zavascki AP, Barth LA, Gaspareto PB, Gonçalves ALS, Moro ALD, Fernandes JF, et al. Risk factors for nosocomial infections due to Pseudomonas aeruginosa producing metallo-beta-lactamase in two tertiary-care teaching hospitals. J Antimicrob Chemother. 2006;58(4):882–885.
33. Mogayzel PT, Naureckas Jr ET, Robinson KA, Mueller G, Hadjiliadis D, Hoag JB, et al. Cystic fibrosis pulmonary guidelines chronic medications for maintenance of lung health. Am J Respir Crit Care Med. 2013;187(7):680–689.
34. Hauser AR, Jain M, Bar-Meir M, McColley SA. Clinical significance of microbial infection and adaptation in cystic fibrosis. Clin Microbiol Rev. 2011;24(1):29–70.
35. Staudinger BJ, Muller JF, Halldórsson S, Boles B, Angermeyer A, Nguyen D, et al. Conditions associated with the cystic fibrosis defect promote chronic Pseudomonas aeruginosa infection. Am J Respir Crit Care Med. 2014;189(7):812–824.
36. Perez LRR, Antunes ALS, Freitas ALP, Barth AL. When the resistance gets clingy: Pseudomonas aeruginosa harboring metallo-beta-lactamase gene shows high ability to produce biofilm. Eur J Clin Microbiol Infect Dis. 2012;31:711–714.
37. Martínez-Solano L, Macia MD, Fajardo A, Oliver A, Martinez JL. Chronic Pseudomonas aeruginosa infection in chronic obstructive pulmonary disease. Clin Infect Dis. 2008;47(12):1526–1533.
38. Wirth FW, Picoli SU, Cantarelli VV, Gonçalves ALS, Brust FR, Santos LMO, et al. Metallo-beta-lactamase-producing Pseudomonas aeruginosa in two hospitals from southern Brazil. Braz J Infect Dis. 2009;13(3):170–172.
39. Chong PM, McCorrister SJ, Unger MS, Boyd DA, Mulvey MR, Westmacott GR. MALDI-TOF MS detection of carbapenemase activity in clinical isolates of Enterobacteriaceae spp., Pseudomonas aeruginosa and Acinetobacter baumannii compared against the Carba-NP assay. J Microbiol Methods. 2015;111:21–23.
40. Sheikh AF, Rostami S, Jolodar A, Tabatabaiefar MA, Khorvash F, Saki A, et al. Detection of metallo-beta-lactamases among carbapenem-resistant Pseudomonas aeruginosa. Jundishapur J Microbiol. 2014;7(11):e12289.
41. Song W, Hong SG, Yong D, Jeong SH, Kim HS, Kim H-S, et al. Combined use of the modified Hodge test and carbapenemase inhibition test for detection of carbapenemase producing Enterobacteriaceae and metallo-beta-lactamase producing Pseudomonas spp. Ann Lab Med. 2015;35(2):212–219.
42. Qu T, Zhang J, Wang J, Tao J, Yu Y, Chen Y, et al. Evaluation of phenotypic tests for detection of metallo-beta-lactamase producing Pseudomonas aeruginosa strains in China. J Clin Microbiol. 2009;47(4):1136–1142.
43. Pitout JDD, Gregson DB, Poirel L, McClure J-A, Le P, Church DL. Detection of Pseudomonas aeruginosa producing metallo-beta-lactamases in a large centralized laboratory. J Clin Microbiol. 2005;43(7):3129–3135.
44. Van der Zwaluw K, de Haan A, Pluister GN, Bootsma HJ, de Neeling AJ, Schouls LM. The carbapenem inactivation method (CIM), a simple and low-cost alternative for the Carba NP test to assess phenotypic carbapenemase activity in gram negative rods. PLoS ONE. 2015;10(3):e0123690.
45. Poirel L, Nordmann P. Rapidec Carba NP test for rapid detection of carbapenemase producers. J Clin Microbiol. 2015;53(9):3003–3008.
46. Nordmann P, Poirel L, Dortet L. Rapid detection of carbapenamase-producing Enterobacteriaceae. Emerg Infect Dis. 2012;18:1503–1507.
47. Dordet L, Poirel L, Nordmann P. Rapid detection of carbapenemase producing Pseudomonas spp. J Clin Microbiol. 2012;50(11):3773–3776.
48. Tai AS, Sidjabat HE, Kidd TJ, Whiley DM, Paterson DL, Bell SC. Evaluation of phenotypic screening tests for carbapenemase production in Pseudomonas aeruginosa from patients with cystic fibrosis. J Microbiol Methods. 2015;111C:105–107.
49. Hrabák J, Chudácˇková E, Walková R. Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry for detection of antibiotic resistance mechanisms: from research to routine diagnosis. Clin Microbiol Rev. 2013;26(1):103–114.