Lung Cancer
PREVALENCE
In 2007, approximately 213,380 new cases of lung cancer were diagnosed in the United States. Lung cancer is the second most frequently diagnosed cancer in both men and women; prostate and breast cancers are the most frequent in men and women, respectively (Fig. 1). The incidence of lung cancer peaked in men in 1984 (86.5/100,000 men) and has subsequently been declining (69.1/100,000 men in 1997). In women, the incidence increased during the 1990s, with a leveling off toward the end of the decade (43.1/100,000 women). These trends parallel the smoking patterns of these two groups.
Figure 1 Age-adjusted cancer incidence rates for male and female population, United States, 1975-2003.
(From Jemal A, Siegel R, Ward E, et al: Cancer statistics, 2007. CA Cancer J Clin 2007;57:43-66.)
Lung cancer is the leading cause of cancer-related mortality in both men and women. It surpassed colon cancer in the early 1950s in men and breast cancer in the late 1980s in women. Mortality rates in men declined significantly in the 1990s, whereas a slow increase occurred in women. These rates again parallel the smoking patterns of these two groups (Figs. 2 and 3). There were an estimated 160,390 deaths in 2007 in the United States secondary to lung cancer. This means that lung cancer accounts for approximately 29% of all cancer deaths. In men, lung cancer becomes the leading cause of cancer-related mortality from age 40 onward. In women, lung cancer surpasses breast cancer in those 60 years and older.1
Figure 2 Age-adjusted cancer death rates for female population, United States, 1930-2003.
(From Jemal A, Siegel R, Ward E, et al: Cancer statistics, 2007. CA Cancer J Clin 2007;57:43-66.)
RISK FACTORS
All cell types of lung cancer are associated with smoking. The strongest associations are with small cell and squamous cell carcinomas. The risk of developing lung cancer decreases over time after smoking cessation, although it never reaches that of a lifelong nonsmoker. Cigar smoking is also an independent risk factor for developing lung cancer.2
Exposure to sidestream smoke, or passive smoking, might lead to an increased risk of lung cancer. The risk varies with the level and duration of exposure. It is generally a much lower risk than is active smoking.3 Some suggest the risk is negligible.4
Many other risk factors have been identified (Box 1). Occupational agents are known to act as lung cancer carcinogens. Arsenic, asbestos, and chromium have the highest risk. An estimated 2% to 9% of lung cancers are related to occupational exposures. An inherited genetic predisposition has epidemiologic support as a risk factor, but the mechanisms are theoretical at this time.5 Women appear to have a higher baseline risk of developing lung cancer as well as a greater susceptibility to the effects of smoking. Differences in the metabolism of tobacco-related carcinogens and their metabolites or an effect of hormone differences are believed to account for the increased susceptibility.6
Dietary factors can modify risks. Higher consumption of fruits and vegetables is associated with a reduced lung cancer risk, and an increased dietary fat intake might lead to a higher risk. Supplementation with vitamins A and E, and beta carotene has not positively influenced risk.7
Chronic obstructive pulmonary disease is an independent risk factor. This risk increases as the forced expiratory volume in 1 second (FEV1) decreases.8,9
CLASSIFICATION
Pathologic features, visible on light microscopy, are used to categorize lung cancers. Lung cancers are divided into two major groups, small cell and non–small cell. These groups guide current evaluation and therapeutic decisions. The non–small cell cancer category consists of adenocarcinoma, squamous cell carcinoma, large cell carcinoma, and variants (Fig. 4).
SIGNS AND SYMPTOMS
The clinical manifestations of lung cancer result from the effects of local growth of the tumor, regional growth or spread through the lymphatic system, hematogenous distant metastatic spread, and remote paraneoplastic effects from tumor products or immune cross-reaction with tumor antigens (Box 2).
Box 2 Lung Cancer Manifestations
Other paraneoplastic syndromes include skeletal and connective tissue syndromes (clubbing, hypertrophic pulmonary osteoarthropathy), coagulation and hematologic disorders, cutaneous and renal manifestations, and systemic symptoms (anorexia, cachexia, and weight loss).10
DIAGNOSIS
Clinical features that suggest malignancy on initial evaluation include older age, current or past history of tobacco abuse, hemoptysis, and the presence of a previous malignancy. Radiographic features suggesting malignancy include the absence of a benign pattern of calcification in the detected lesion, a nodule or mass that is growing, a nodule with a spiculated or lobulated border, a larger lesion (>3 cm is considered malignant unless proven otherwise), and a cavitary lesion that is thick walled. Modern imaging techniques are used to alter the clinical probability of malignancy and hence influence biopsy decisions. Positron emission tomography (PET) using 18F fluorodeoxyglucose is the most-studied ancillary imaging technique. It has a sensitivity of 97% and a specificity of 78% as used in clinical practice.11 Single-photon emission CT and lung nodule enhancement with contrast-enhanced CT are less well established.
Transthoracic needle biopsy, using fluoroscopic or CT guidance, can be used to obtain tissue. The positive predictive value of this procedure is high, the negative predictive value is modest, and the rate of establishing a specific benign diagnosis is low. Smaller nodules in central locations have lower diagnostic rates. A higher rate of pneumothorax occurs with transthoracic needle biopsy; thus, flexible bronchoscopy is often attempted first.12