Congenital Heart Disease in the Adult
PREVALENCE AND RISK FACTORS
CHD in the adult is now more prevalent than ever because of the rapid advances in surgical and medical interventions in the pediatric population. As a result, there are now an estimated 750,000 adults with CHD in the United States,1 and this figure excludes patients with bicuspid aortic valves, which are present in up to 2% of the population, and mitral valve prolapse. There are a few generalized syndromes in which a toxic exposure during neonatal development has been linked with the development of CHD. Two classic examples are congenital rubella, in which patent ductus arteriosus has been well described, and women who were administered lithium carbonate during their first trimester of pregnancy, which appears to increase the risk of Ebstein’s anomaly. Most congenital heart disease, however, appears to be caused by genetic abnormalities, a few of which have been well described, but many of which remain to be elucidated. Evidence to support the importance of genetics in CHD includes the much higher risk in the offspring of CHD patients than the 0.8% general population risk; animal models such as transgenic knockout mice that develop cardiac abnormalities; well-described familial kindreds with lesions such as atrial septal defects; and mendelian patterns of inheritance and the common clinical syndromes such as trisomy 21 (Down syndrome), in which atrioventricular canal–type (primum) septal defects are commonly present, and Noonan’s syndrome, in which pulmonic stenosis is often present.2 In general, routine screening of adults for genetic mutations is not currently advocated for most adults with CHD, even for family planning.
PATHOPHYSIOLOGY
Shunt Lesions
Atrial Septal Defect
The atrial septal defect (ASD) is the most common congenital heart defect encountered in adults, accounting for up to 15% of all adult CHD (Fig. 1). It results from the failure of proper embryologic development of the atrial septum. There are many different types of ASD (Fig. 2), the most common of which is the secundum ASD, in which the defect occurs in the middle of the atrial septum.
Ventricular Septal Defect
Ventricular septal defect (VSD) is the most common congenital heart defect seen in children (Fig. 3). Defects can occur at various locations in the septum but most commonly occur in the membranous (Fig. 4) or muscular portions. Small defects often close spontaneously during childhood. One type of defect, the outflow (or supracristal) VSD, can be spontaneously occluded by one of the aortic leaflets prolapsing into it. This can result in the development of significant aortic insufficiency.
Figure 3 Types of ventricular septal defect (VSD).
VSD is the most common congenital heart defect seen in children.
Patent Ductus Arteriosus
Patent ductus arteriosus (PDA; Fig. 5) is the second most common congenital heart defect seen in adults (approximately 10%-15% of all CHD in adults). PDA is present as an isolated lesion in most adults, unlike in children, in whom it is often seen with more complex heart defects. The ductus connects the descending aorta at the level of the subclavian artery to the proximal left pulmonary artery. As in VSD, patients with a large uncorrected PDA can develop pulmonary hypertension.
Stenotic Lesions
Pulmonary Stenosis
Pulmonary stenosis is the most common congenital valve lesion that requires therapy in adults (Fig. 6). Gradients across the pulmonary outflow tract usually occur at the valvular level, but it can also involve the infundibulum (right ventricular outflow tract), peripheral pulmonary arteries, or both. Complications of pulmonary stenosis include right ventricular hypertrophy and eventually failure, as well as arrhythmias.
Coarctation of the Aorta
Coarctation of the aorta (CoA) is a common congenital heart defect (Fig. 7) accounting for approximately 8% of all congenital defects. It probably results from extraneous ductal tissue that contracts following birth. Anatomically, it can occur before, at the level of, or after the ductus arteriosus, although adults with previously undiagnosed CoA almost always have postductal lesions. The most common way it is identified in adults is fortuitous discovery during secondary workup for systemic hypertension. Lower extremity and renal hypoperfusion lead to a hyper-renin state that might not abate, even after coarctation repair. In most patients, there is upper extremity hypertension and the development of collateral vessels around the coarctation to the lower extremity.
Complex Lesions (Acyanotic)
Transposition of the Great Arteries
Transposition of the great arteries (TGA; Fig. 8) refers to an abnormality in the developmental separation of the great vessels, which results in the aorta emanating from the venous ventricle and the pulmonary artery coming off the systemic ventricle (ventriculoarterial discordance). Two varieties are most commonly seen in adults. The first type is dextrotransposition of the great arteries (D-TGA), with “dextro” initially meant to describe the location of the aorta in respect to the pulmonary artery. In this condition, the right ventricle gives rise to the aorta and the left ventricle gives rise to the pulmonary artery, but both atria are appropriately connected to their respective ventricles (AV concordance). This condition is not compatible with life unless there is a naturally occurring shunt (ASD, VSD, or PDA) or surgically created shunt. Often, these patients have undergone repair during childhood with a Senning or Mustard procedure, in which blood is baffled from the venae cavae to the left atrium and from the pulmonary veins to the right atrium (Fig. 9). The primary long-term concern in these patients is that the right ventricle is ill prepared to serve as the systemic ventricle. It can weaken and fail over time (usually when the patient enters the third or fourth decade), and these patients also develop significant systemic AV regurgitation, with the tricuspid valve in the mitral position.
The other type of TGA is the congenitally (naturally) corrected lesion, levotransposition of the great arteries (L-TGA). In this case, the ventricles are also inverted (both AV and ventriculoarterial discordance are present). This variation (see Fig. 8) results in a circulation in which blood flows from vena cava to right atrium to left ventricle to pulmonary artery to pulmonary veins to left atrium to right ventricle to aorta. Again, the problem remains a right ventricle pumping into the systemic circulation. This condition is also associated with about a one in three lifetime prevalence of complete heart block.
Complex Lesions (Cyanotic)
Tetralogy of Fallot
Tetralogy of Fallot (TOF), a conotruncal abnormality, is a constellation of four findings: an aorta that overrides the right ventricular outflow tract; right ventricular outflow obstruction; a large subaortic VSD; and hypertrophy of the right ventricle (Fig. 10). The frequent coexistence of an ASD can make for a pentalogy. Occasionally, patients with unrepaired TOF only present in adulthood because of a remarkable balance between the pulmonic obstruction and the VSD, which limits cyanosis.
Early palliation with a systemic-to-arterial shunt (e.g., Blalock-Taussig), which connects the subclavian and pulmonary arteries (Fig. 11), facilitates growth of the pulmonary arteries and is a precursor to definitive surgical repair in the young child. Definitive repair often involves complete removal of the pulmonic valve (Fig. 12) and therefore results in wide open pulmonic regurgitation. Although the repair is tolerated for several years, the right ventricle eventually succumbs to volume overload and progressively increases in size.