Acute Myocardial Infarction
DEFINITION AND ETIOLOGY
Critical myocardial ischemia can occur as a result of increased myocardial metabolic demand, decreased delivery of oxygen and nutrients to the myocardium via the coronary circulation, or both. An interruption in the supply of myocardial oxygen and nutrients occurs when a thrombus is superimposed on an ulcerated or unstable atherosclerotic plaque and results in coronary occlusion.1 A high-grade (>75%) fixed coronary artery stenosis caused by atherosclerosis or a dynamic stenosis associated with coronary vasospasm can also limit the supply of oxygen and nutrients and precipitate an MI. Conditions associated with increased myocardial metabolic demand include extremes of physical exertion, severe hypertension (including forms of hypertrophic obstructive cardiomyopathy), and severe aortic valve stenosis. Other cardiac valvular pathologies and low cardiac output states associated with a decreased mean aortic pressure, which is the prime component of coronary perfusion pressure, can also precipitate MI.
Myocardial infarction can be subcategorized on the basis of anatomic, morphologic, and diagnostic clinical information. From an anatomic or morphologic standpoint, the two types of MI are transmural and nontransmural. A transmural MI is characterized by ischemic necrosis of the full thickness of the affected muscle segment(s), extending from the endocardium through the myocardium to the epicardium. A nontransmural MI is defined as an area of ischemic necrosis that does not extend through the full thickness of myocardial wall segment(s). In a nontransmural MI, the area of ischemic necrosis is limited to the endocardium or to the endocardium and myocardium. It is the endocardial and subendocardial zones of the myocardial wall segment that are the least perfused regions of the heart and the most vulnerable to conditions of ischemia. An older subclassification of MI, based on clinical diagnostic criteria, is determined by the presence or absence of Q waves on an electrocardiogram (ECG). However, the presence or absence of Q waves does not distinguish a transmural from a nontransmural MI as determined by pathology.2
A consensus statement was published to give a universal definition of the term myocardial infarction. The authors stated that MI should be used when there is evidence of myocardial necrosis in a clinical setting consistent with MI. Myocardial infarction was then classified by the clinical scenario into various subtypes. Type 1 is a spontaneous MI related to ischemia from a primary coronary event (e.g., plaque rupture, thrombotic occlusion). Type 2 is secondary to ischemia from a supply-and-demand mismatch. Type 3 is an MI resulting in sudden cardiac death. Type 4a is an MI associated with percutaneous coronary intervention, and 4b is associated with in-stent thrombosis. Type 5 is an MI associated with coronary artery bypass surgery.3
A more common clinical diagnostic classification scheme is also based on electrocardiographic findings as a means of distinguishing between two types of MI, one that is marked by ST elevation (STEMI) and one that is not (NSTEMI). Management practice guidelines often distinguish between STEMI and non-STEMI, as do many of the studies on which recommendations are based. The distinction between STEMI and NSTEMI also does not distinguish a transmural from a nontransmural MI. The presence of Q waves or ST-segment elevation is associated with higher early mortality and morbidity; however, the absence of these two findings does not confer better long-term mortality and morbidity.4
PREVALENCE AND RISK FACTORS
Myocardial infarction is the leading cause of death in the United States and in most industrialized nations throughout the world. Approximately 450,000 people in the United States die from coronary disease per year.5 The survival rate for U.S. patients hospitalized with MI is approximately 95%. This represents a significant improvement in survival and is related to improvements in emergency medical response and treatment strategies.
Six primary risk factors have been identified with the development of atherosclerotic coronary artery disease and MI: hyperlipidemia, diabetes mellitus, hypertension, tobacco use, male gender, and family history of atherosclerotic arterial disease. The presence of any risk factor is associated with doubling the relative risk of developing atherosclerotic coronary artery disease.1
Hyperlipidemia
Elevated levels of total cholesterol, LDL, or triglycerides are associated with an increased risk of coronary atherosclerosis and MI. Levels of HDL less than 40 mg/dL also portend an increased risk. A full summary of the National Heart, Lung, and Blood Institute’s cholesterol guidelines is available online.6
Hypertension
High blood pressure (BP) has consistently been associated with an increased risk of MI. This risk is associated with systolic and diastolic hypertension. The control of hypertension with appropriate medication has been shown to reduce the risk of MI significantly. A full summary of the National Heart, Lung, and Blood Institute’s JNC 7 guidelines published in 2003 is available online.7
Tobacco Use
Certain components of tobacco and tobacco combustion gases are known to damage blood vessel walls. The body’s response to this type of injury elicits the formation of atherosclerosis and its progression, thereby increasing the risk of MI. A small study in a group of volunteers showed that smoking acutely increases platelet thrombus formation. This appears to target areas of high shear forces, such as stenotic vessels, independent of aspirin use.8 The American Lung Association maintains a website with updates on the public health initiative to reduce tobacco use and is a resource for smoking-cessation strategies for patients and health care providers.
SIGNS AND SYMPTOMS
DIAGNOSIS
Diagnostic Procedures
The first diagnostic test is electrocardiography (ECG), which may demonstrate that a MI is in progress or has already occurred. Interpretation of an ECG is beyond the scope of this chapter; however, one feature of the ECG in a patient with an MI should be noted because it has a bearing on management. Practice guidelines on MI management consider patients whose ECG does or does not show ST-segment elevation separately. As noted earlier, the former is referred to as ST elevation MI (Fig. 1) and the latter as non-ST elevation MI (Fig. 2). In addition to ST-segment elevation, 81% of electrocardiograms during STEMI demonstrate reciprocal ST-segment depression as well.
Figure 1 Twelve-lead electrocardiogram showing ST-segment (V1 to V4) elevation myocardial infarction.
(Courtesy of Dr. Donald Underwood, Cleveland Clinic Foundation)
Laboratory Tests
Living myocardial cells contain enzymes and proteins (e.g., creatine kinase, troponin I and T, myoglobin) associated with specialized cellular functions. When a myocardial cell dies, cellular membranes lose integrity, and intracellular enzymes and proteins slowly leak into the blood stream. These enzymes and proteins can be detected by a blood sample analysis. These values vary depending on the assay used in each laboratory. Given the acuity of a STEMI and the need for urgent intervention, the laboratory tests are usually not available at the time of diagnosis. Thus, good history taking and an ECG are used to initiate therapy in the appropriate situations. The real value of biomarkers such as troponin lies in the diagnosis and prognosis of NSTEMI (Fig. 3).
TREATMENT
The goals of therapy in acute MI are the expedient restoration of normal coronary blood flow and the maximum salvage of functional myocardium. These goals can be met by a number of medical interventions and adjunctive therapies. The primary obstacles to achieving these goals are the patient’s failure to recognize MI symptoms quickly and the delay in seeking medical attention. When patients present to a hospital, there are a variety of interventions to achieve treatment goals. “Time is muscle” guides the management decisions in acute STEMI, and an early invasive approach is the standard of care for acute NSTEMI.4
Medical Options
Antiplatelet Agents
The use of aspirin has been shown to reduce mortality from MI. Aspirin in a dose of 325 mg should be administered immediately on recognition of MI signs and symptoms.4,9 The nidus of an occlusive coronary thrombus is the adhesion of a small collection of activated platelets at the site of intimal disruption in an unstable atherosclerotic plaque. Aspirin irreversibly interferes with function of cyclooxygenase and inhibits the formation of thromboxane A2. Within minutes, aspirin prevents additional platelet activation and interferes with platelet adhesion and cohesion. This effect benefits all patients with acute coronary syndromes, including those with amyocardial infarction. Aspirin alone has one of the greatest impacts on the reduction of MI mortality. Its beneficial effect is observed early in therapy and persists for years with continued use. The long-term benefit is sustained, even at doses as low as 75 mg/day.
The Clopidogrel and Metoprolol in Myocardial Infarction Trial/Second Chinese Cardiac Study (COMMIT-CCS 2) trial evaluated the use of clopidogrel versus placebo in patients who were taking aspirin but not undergoing reperfusion therapy. It demonstrated a benefit in favor of clopidogrel when used with aspirin.10 The Clopidogrel as Adjunctive Reperfusion Therapy—Thrombolysis in Myocardial Infarction 28 (CLARITY-TIMI 28) study compared clopidogrel versus placebo in patients receiving fibrinolytics within 12 hours of STEMI and showed a benefit in favor of clopidogrel as well.11 The current recommendations for antiplatelet agents is summarized in Table 1.
Treatment Modality | Aspirin | Clopidogrel |
---|---|---|
Medical management | 75-162 mg/day indefinitely | Optional: 75 mg/day × 1 month |
Bare Metal stent | 162-325 mg/day × 1 month, then 75-162 mg/day indefinitely | 300 mg loading dose,* then 75 mg/day × 1 month |
Sirolimus eluting stent (Cypher) | 162-325 mg/day × 3 months, then 75-162 mg/day indefinitely | 300 mg loading dose,* then 75 mg/day × 1 year |
Paclitaxel eluting stent (Taxus) | 162-325 mg/day × 6 months, then 75-162 mg/day indefinitely | 300 mg loading dose,* then 75 mg/day × 1 year |