The Manipulative Prescription
In the practice of medicine, it is essential that an accurate diagnosis be made before the institution of either curative or palliative therapy. When a therapeutic intervention is indicated, particularly when using pharmacotherapeutic agents, a specific and accurate prescription must be written. No self-respecting physician would make a diagnosis of throat infection and write a prescription for an antibiotic.
Diagnosis (DX)—Throat infection
Prescription (RX)—Antibiotic
The physician would seek to identify the infectious agent, either bacterial or viral, causing the throat infection. When a specific infectious agent responsive to antibiotic therapy is identified, a specific prescription would be written for the antibiotic agent. The prescription would identify the antibiotic to be used, the strength of each dose, the number of doses per day, and the duration of therapy.
In manual medicine, it is common for practitioners to be lax in their specificity for the structural diagnosis and prescription of the manual medicine intervention to be applied. Too often, a diagnosis is made of somatic dysfunction, and manual medicine is the prescription, such as:
DX—Somatic dysfunction
RX—Manipulative treatment
In manual medicine, it is just as important to know the location, nature, and type of somatic dysfunction before a specific manual medicine therapeutic intervention is prescribed. The same elements are needed for a manual medicine prescription as for a pharmaceutical agent. One wants to be specific about the type of manual medicine, the intensity, the frequency, and the total length of the treatment plan. Therefore, the manipulative prescription requires an accurate diagnosis of the somatic dysfunction to be treated and a specific description of the type of manipulative procedure, the intensity, and the frequency.
Manipulative therapeutic procedures are indicated for the diagnostic entity somatic dysfunction or the manipulable lesion.
SOMATIC DYSFUNCTION
Somatic dysfunction is impaired or altered function of related components of the somatic (body framework) system: skeletal, arthrodial, and myofascial structures and the related vascular, lymphatic, and neural elements.
MANIPULABLE LESION SYNONYMS
Joint blockage
Joint lock
Chiropractic subluxation
Osteopathic lesion
Loss of joint play
Minor intervertebral derangements
DIAGNOSTIC TRIAD
In defining somatic dysfunction, one uses three elements:
“A” for asymmetry of form or function of related parts of the musculoskeletal system.
“R” for range of motion, primarily alteration of motion, looking at range, quality of motion during the range, and the “end feel” at the limit of movement.
“T” for tissue texture abnormality with alteration in the feel of the soft tissues, mainly muscle hypertonicity, and in skin and connective tissues, described as hot/cold, soft/hard, boggy, doughy, and so forth. Most of the tissue texture abnormalities result from altered nervous system function with increased alpha motor neuron activity maintaining muscle hypertonicity and altered sympathetic autonomic nervous system function to the skin viscera, and vasomotor, pseudomotor, and pilomotor activity.
CLINICAL GOALS FOR MANIPULATIVE TREATMENT
As previously stated, the goal of manipulation is the use of the hands in a patient management process, using instructions and maneuvers to achieve maximal, painless, movement of the musculoskeletal (motor) system in postural balance. In achieving this goal, different types of therapeutic effects upon the patient can be sought. They can be classified as follows:
Circulatory effects
Move body fluids
Provide tonic effect
Neurologic effect—modify reflexes
Somatosomatic
Somatovisceral
Viscerosomatic
Viscerovisceral
Viscerosomatovisceral
Somatoviscerosomatic
Maintenance therapy for irreversible conditions
Depending on the desired outcome, the therapeutic application will use different models of manual medicine.
MODELS AND MECHANISMS OF MANUAL MEDICINE INTERVENTION
Several different conceptual models can be used in determining the manual medicine approach to a patient. Five such models will be described, but it should be evident that when a manual medicine procedure is provided, it has multiple effects and is mediated through a number of different mechanisms.
Postural Structural or Biomechanical Model
The postural structural model is probably the one most familiar to practitioners of manual medicine. In this model, the patient is approached from a biomechanical orientation toward the musculoskeletal system. The osseous skeleton is viewed as a series of building blocks piled one on top of the other, starting with the bones of the foot and ending with the skull. The ligamentous and fascial structures are the tissues that connect the osseous framework, and the muscles are the prime movers of the bones of the skeleton, working across single and multiple joint structures. Alteration of the patient’s musculoskeletal system is viewed from the alignment of the bones and joints, the balance of muscles as movers and stabilizers of the skeleton, the symmetry of tone of the ligaments, and the integrity of the continuous bands of fascia throughout. Alteration in joint apposition, alteration in muscle function due to hypertonicity or weakness, tightness or laxity of ligament(s), and shortening or lengthening of fascia are all considered when approaching a patient from this perspective. The manual medicine treatment would be directed toward restoring maximal motion to all joints, symmetry of length and strength to all muscles and ligaments, and symmetry of tension within fascial elements throughout the body. The goal is to restore maximal function of this musculoskeletal system in postural balance. The patient can be approached starting at the feet and ending with the head or vice versa, starting from the top and ending at the feet.
The most important element of the postural structural model in this author’s experience has been the restoration of maximum pelvic mechanics in the walking cycle. The pelvis becomes the cornerstone of the postural structural model. Influences from below or above must be considered to achieve symmetric movement of the osseous pelvis during walking.1
This model is most useful in approaching patients with pain resulting from either single instances of trauma or microtrauma over time due to postural imbalance from such entities as anatomic shortening of one leg, unilateral fallen arch, and so forth. This conceptual model includes much of the current biomechanical engineering research in the areas of joint mechanics; properties of ligaments, tendons, and fascia; and kinetics and kinematics.2
Neurologic Model
The neurologic model concerns influencing neural mechanisms through manual medicine intervention. One mechanism of action is through the autonomic nervous system. There is a large body of basic research regarding the influence of the somatic (motor) system on the function of the autonomic nervous system, primarily the sympathetic division. This basic research is consistent with clinical observations. Additional clinical research is needed as to the influence of alteration in function of the musculoskeletal system on total body function mediated through the sympathetic division of the autonomic nervous system.
Autonomic Nervous System Model
The concept is based on the organization of the sympathetic nervous system, whose preganglionic fibers take their origin from the spinal cord from T1 to L3. The lateral chain ganglia are paired and overlie the posterior thoracic and abdominal walls, where synaptic junction occurs with postganglionic fibers. The lateral chain ganglia in the thoracic region are tightly bound by the fascia to the posterior chest wall and overlie the heads of the ribs. Measurable sympathetic nervous system changes have been demonstrated following thoracic manipulation,3 and it is hypothesized that altered mechanics of the costovertebral articulations could mechanically influence the lateral chain ganglia, or the peripheral ganglia, through which the sympathetic nervous system synapses with postganglionic fibers that are relatively adjacent to the organs being innervated.
The sympathetic nervous system is the sole source of autonomic nervous system activity to the musculoskeletal system. There is no parasympathetic innervation to the somatic tissues. The sympathetic nervous system has wide influence on visceral function, endocrine organs, reticuloendothelial system, circulatory system, peripheral nervous system, central nervous system, and muscle. Korr has worked extensively on the function of the sympathetic nervous system and points out the wide diversity of influence that sympathetic hyperactivity has on target end organs. Many factors can affect sympathetic hypertonia, one of which is afferent impulses from segmentally related areas of soma. It would seem reasonable, therefore, to attempt to reduce aberrant afferent stimulus to hyperirritable sections of the sympathetic nervous system to reduce the hyperactivity on target end organs.4
Because the sympathetic nervous system is organized segmentally, it can be used in a maplike fashion to look for both alterations of afferent stimulus and areas that might be influenced through manual medicine intervention. All of the viscera and soma above the diaphragm receive their preganglionic sympathetic nervous system fibers from above cord level T4. All viscera and soma below the diaphragm receive preganglionic sympathetic nervous system fibers from T5 and below. Understanding this anatomy helps in relating the identified somatic dysfunction to the patient’s problem and can lead the physician to give appropriate manual medicine treatment to those areas of somatic dysfunction thought to contribute increased somatic afferent stimuli to cord levels with manifestations of increased sympathetic nervous system activity.5
The parasympathetic nervous system takes its origin from the brain, brainstem, and sacral segments of the cord. Its organization differs from the segmental aspects of the sympathetic division, but its segmentation relates to the origin of the cranial
nerves in the brainstem and the segmentation of the sacral cord. The cranial nerves, including those with parasympathetic activity, exit from the skull through numerous foramina and penetrate the dura. These nerves are at risk for entrapment with alteration of cranial mechanics and dural tension. Often, the clinical goal of cranial technique is to improve the function of cranial nerves as they exit the skull and sacrum. The autonomic nervous system neurologic model leads the therapist toward a patient approach based on the anatomy and physiology of the two divisions of the autonomic nervous system and how best to affect them through manual medicine means.
nerves in the brainstem and the segmentation of the sacral cord. The cranial nerves, including those with parasympathetic activity, exit from the skull through numerous foramina and penetrate the dura. These nerves are at risk for entrapment with alteration of cranial mechanics and dural tension. Often, the clinical goal of cranial technique is to improve the function of cranial nerves as they exit the skull and sacrum. The autonomic nervous system neurologic model leads the therapist toward a patient approach based on the anatomy and physiology of the two divisions of the autonomic nervous system and how best to affect them through manual medicine means.
Pain Model
A second neurologic model focuses more on the interrelationships of the peripheral and central nervous systems, their reflex patterns, and their multiple pathways. This model is particularly useful in managing patients with pain syndromes, such as back pain. Although controversy remains about the origin of back pain, much is known about the location and type of nociceptors and mechanoreceptors within the musculoskeletal system.6 The pain stimulus can originate in a number of tissues and be transmitted by peripheral afferent neurons to the spinal cord for integration and organization. Different neurons end in different laminae of the dorsal horn and synapse with interneurons that transmit information up and down the spinal cord, thus affecting other neuronal pools through propriospinal pathways. Transmission up the cord to higher centers can be through the fast or slow pain pathways. Pain is perceived in the brain, and stimulatory or inhibitory activities can enhance or reduce the pain perception. These processes are programmed through the brainstem and back down the cord to modulate activity at cord segmental level.
An understanding of the anatomy and physiology of the musculoskeletal system and nervous systems, particularly the spine and paraspinal tissues, is necessary to develop a therapeutic plan to manage the patient’s pain syndrome. A clear distinction must be made between acute pain and chronic pain. Acute pain is that which is best known to the clinician. It results from tissue damage, is well localized, has clear objective evidence of injury, and has a sharp pricking quality. There may be some lingering burning and aching. Acute pain responds well to treatment and abates when the tissue damage has resolved. Chronic pain persists despite the lack of ongoing tissue damage. It is poorly localized with no objective evidence present. It has a burning aching quality with a strong associated affective component. Changes have occurred in the central pathways and central endogenous control. It is unclear as to when chronic pain begins, but it is generally accepted that ongoing pain beyond three months results in central pathway changes. Acute and chronic pains respond differently to therapeutic interventions. Manual medicine has a role in the treatment of both acute and chronic musculoskeletal pain syndromes. In the acute condition, manual medicine attempts to reduce the ongoing afferent stimulation of the nociceptive process.7 If it is determined that muscle contraction and hypertonicity are primary factors, muscle energy procedures might be most beneficial. If it is believed that altered mechanoreceptive behavior in the articular and periarticular structure of the zygapophyseal joint is the primary factor, a mobilizing procedure with or without impulse might be more appropriate. The goal of manual medicine in the patient with chronic pain is to restore the maximum functional capacity of the musculoskeletal system so that exercises and increased activities of daily living can occur. It is difficult for a patient with chronic pain to undergo exercise therapy and reconditioning rehabilitative processes in the presence of restricted mobility of the musculoskeletal system.
Stability Model
The third concept within the neurologic model is that of dynamic stability. Recently, a large focus on trunk control and dynamic joint stabilization has immersed itself on the physical therapy and biomechanical literature.8 The primary tenet is a respect for the body’s utilization of neuromuscular “feedforward” neurologic mechanisms, to prepare it to accomplish a task, and “feedback” neurologic mechanisms, to prevent injury or strain in the case of unexpected perturbation. Dynamic stability of the spine relies on the interdependent relationship of active (muscular), passive (articular/ligamentous), and neuromuscular subsystems defined by Panjabi.9 The active subsystem component of most importance for dynamic stabilization is the muscles that control “neutral” joint position. These “stabilizer muscles are described as having the characteristics of being mono-articular or segmental, deep, working eccentrically to control movement, and having static holding capacities.”10 The passive subsystem consists of the articular surface, ligaments, and discs, which provide structural control, movement checks, and critical afferent kinesthetic information via its mechanoreceptors.11 The neuromuscular subsystem relies on the central nervous feedforward control as well as feedback neurologic information from the active and passive subsystems. Although joint dysfunction resulting in musculoskeletal pain is often approached from the biomechanical model, there has been a significant amount of research suggesting an association with inhibition of the local stabilizers as well as deficits in feedforward and/or feedback neurologic mechanisms12 and thus deserves a neurologic consideration.